scholarly journals Inhibition of basement membrane formation by a nidogen-binding laminin  1-chain fragment in human skin-organotypic cocultures

2004 ◽  
Vol 117 (12) ◽  
pp. 2611-2622 ◽  
Author(s):  
D. Breitkreutz
2000 ◽  
Vol 113 (2) ◽  
pp. 259-268 ◽  
Author(s):  
M. Aumailley ◽  
M. Pesch ◽  
L. Tunggal ◽  
F. Gaill ◽  
R. Fassler

Basement membranes are the earliest extracellular matrices produced during embryogenesis. They result from synthesis and assembly into a defined supramolecular architecture of several components, including laminins, collagen IV, nidogen, and proteoglycans. In vitro studies have allowed us to propose an assembly model based on the polymerisation of laminin and collagen IV in two separate networks associated together by nidogen. How nucleation of polymers and insolubilisation of the different components into a basement membrane proceed in vivo is, however, unknown. A most important property of several basement membrane components is to provide signals controling the activity of adjacent cells. The transfer of information is mediated by interactions with cell surface receptors, among them integrins. Mouse genetics has demonstrated that the absence of these interactions is not compatible with development as deletion of either laminin (gamma)1 chain or integrin (beta)1 chain lead to lethality of mouse embryos at the peri-implantation stage. We have used embyoid bodies as a model system recapitulating the early steps of embryogenesis to unravel the respective roles of laminin and (beta)1 integrins in basement membrane formation. Our data show that there is formation of a basal lamina in wild-type, but not in (beta)1-integrin deficient, embryoid bodies. Surprisingly, in the absence of (beta)1 integrins, laminin 1 was not secreted in the extracellular space due to a rapid switch off of laminin (alpha)1 chain synthesis which normally drives the secretion of laminin heterotrimers. These results indicate that (beta)1 integrins are required for the initiation of basement membrane formation, presumably by applying a feed-back regulation on the expression of laminin (alpha)1 chain and other components of basement membranes.


1998 ◽  
Vol 16 ◽  
pp. S120
Author(s):  
Raul Fleischmaier ◽  
E.Douglas MacDonald ◽  
Jerome S. Perlish ◽  
Allen N. Sapadin ◽  
Yoshihiko Yomada

Development ◽  
2009 ◽  
Vol 136 (20) ◽  
pp. 3495-3504 ◽  
Author(s):  
C. Anderson ◽  
S. Thorsteinsdottir ◽  
A.-G. Borycki

Sign in / Sign up

Export Citation Format

Share Document