organotypic culture
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 46)

H-INDEX

34
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hiroko Katsuno-Kambe ◽  
Jessica L Teo ◽  
Robert J Ju ◽  
James Hudson ◽  
Samantha J Stehbens ◽  
...  

Epithelial networks are commonly generated by processes where multicellular aggregates elongate and branch. Here we focus on understanding cellular mechanisms for elongation, using an organotypic culture system as a model of mammary epithelial anlage. Isotropic cell aggregates broke symmetry and slowly elongated when transplanted into collagen 1 gels. The elongating regions of aggregates displayed enhanced cell proliferation that was necessary for elongation to occur. Strikingly, this loco-regional increase in cell proliferation occurred where collagen 1 fibrils reorganized into bundles which were polarized with the elongating aggregates. Applying external stretch as a cell-independent way to reorganize the ECM, we found that collagen polarization stimulated regional cell proliferation to precipitate symmetry-breaking and elongation. This required b1-integrin and ERK signaling. We propose that collagen polarization supports epithelial anlagen elongation by stimulating loco-regional cell proliferation. This could provide a long-lasting structural memory of the initial axis that is generated when anlage break symmetry.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4890
Author(s):  
Bénédicte Brulin ◽  
John C. Nolan ◽  
Tecla Marangon ◽  
Milan Kovacevic ◽  
Mathias Chatelais ◽  
...  

Improvements in the clinical outcome of osteosarcoma have plateaued in recent decades with poor translation between preclinical testing and clinical efficacy. Organotypic cultures retain key features of patient tumours, such as a myriad of cell types organized within an extracellular matrix, thereby presenting a more realistic and personalised screening of chemotherapeutic agents ex vivo. To test this concept for the first time in osteosarcoma, murine and canine osteosarcoma organotypic models were maintained for up to 21 days and in-depth analysis identified proportions of immune and stromal cells present at levels comparable to that reported in vivo in the literature. Cytotoxicity testing of a range of chemotherapeutic drugs (mafosfamide, cisplatin, methotrexate, etoposide, and doxorubicin) on murine organotypic culture ex vivo found limited response to treatment, with immune and stromal cells demonstrating enhanced survival over the global tumour cell population. Furthermore, significantly decreased sensitivity to a range of chemotherapeutics in 3D organotypic culture relative to 2D monolayer was observed, with subsequent investigation confirming reduced sensitivity in 3D than in 2D, even at equivalent levels of drug uptake. Finally, as proof of concept for the application of this model to personalised drug screening, chemotherapy testing with doxorubicin was performed on biopsies obtained from canine osteosarcoma patients. Together, this study highlights the importance of recapitulating the 3D tumour multicellular microenvironment to better predict drug response and provides evidence for the utility and possibilities of organotypic culture for enhanced preclinical selection and evaluation of chemotherapeutics targeting osteosarcoma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongming Sang ◽  
Laura C. Miller ◽  
Rahul K. Nelli ◽  
Luis Gabriel Giménez-Lirola

Animal models and cell culture in vitro are primarily used in virus and antiviral immune research. Whereas the limitation of these models to recapitulate the viral pathogenesis in humans has been made well aware, it is imperative to introduce more efficient systems to validate emerging viruses in both domestic and wild animals. Organoids ascribe to representative miniatures of organs (i.e., mini-organs), which are derived from three-dimensional culture of stem cells under respective differential conditions mimicking endogenous organogenetic niches. Organoids have broadened virological studies in the human context, particularly in recent uses for COVID19 research. This review examines the status and potential for cross-species applied organotypic culture in validating emerging animal, particularly zoonotic, viruses in domestic and wild animals.


2021 ◽  
Author(s):  
Huaibiao Li ◽  
Moritz Schuette ◽  
Magdalena Bober ◽  
Torsten Kroll ◽  
Lucien Frappart ◽  
...  

The alveolar type II (AT2) epithelial cell fraction includes the stem cells of the pulmonary alveoli, functioning in lung homeostasis and post-injury repair. AT2 cells have been characterized primarily in situ, in transgenic mouse models. We report a new methodology for their isolation, their omics characterization and stroma-cell-free organotypic culture. Our multi-omics analysis identified high expression of genes involved in oxidative phosphorylation and of AP-1 components, as well as new phosphorylation sites in AT2 biomarkers. Furthermore, we show that supplementation with KGF, FGF10 & HGF suffices for the in vitro proliferation of AT2 cells and formation of alveolar organoids, suggesting that AT2-based organotypic development depends on ligands of the c-Met and FGFR2 receptors. The reported methodology and in-depth molecular characterization provide new tools for the in vitro and in vivo functional analysis of pulmonary cells and of mouse models of lung disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgina Navoly ◽  
Conor J. McCann

AbstractEnteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Carmen Terren ◽  
Michelle Nisolle ◽  
Carine Munaut

Abstract Background Cryopreservation and transplantation of ovarian tissue (OTCTP) represent a promising fertility preservation technique for prepubertal patients or for patients requiring urgent oncological management. However, a major obstacle of this technique is follicle loss due to, among others, accelerated recruitment of primordial follicles during the transplantation process, leading to follicular reserve loss in the graft and thereby potentially reducing its lifespan. This study aimed to assess how cryopreservation itself impacts follicle activation. Results Western blot analysis of the PI3K/PTEN/Akt and mTOR signalling pathways showed that they were activated in mature or juvenile slow-frozen murine ovaries compared to control fresh ovaries. The use of pharmacological inhibitors of follicle signalling pathways during the cryopreservation process decreased cryopreservation-induced follicle recruitment. The second aim of this study was to use in vitro organotypic culture of cryopreserved ovaries and to test pharmacological inhibitors of the PI3K/PTEN/Akt and mTOR pathways. In vitro organotypic culture-induced activation of the PI3K/PTEN/Akt pathway is counteracted by cryopreservation with rapamycin and in vitro culture in the presence of LY294002. These results were confirmed by follicle density quantifications. Indeed, follicle development is affected by in vitro organotypic culture, and PI3K/PTEN/Akt and mTOR pharmacological inhibitors preserve primordial follicle reserve. Conclusions Our findings support the hypothesis that inhibitors of mTOR and PI3K might be an attractive tool to delay primordial follicle activation induced by cryopreservation and culture, thus preserving the ovarian reserve while retaining follicles in a functionally integrated state.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Terren ◽  
M Nisolle ◽  
C Munaut

Abstract Study question Which signalling pathways are implicated in primordial follicle activation induced by cryopreservation and/or organotypic culture? Is it possible to limit this activation through pharmacological inhibitors? Summary answer Our findings provide support for the hypothesis that mTOR and PI3K inhibitors might represent an attractive tool to delay cryopreservation- and culture-induced primordial follicle activation. What is known already Cryopreservation of ovarian tissue containing immature primordial follicles followed by auto-transplantation (OTCTP) is the only option available to preserve the fertility of prepubertal patients or patients requiring urgent therapy for aggressive malignancies. However, a major obstacle in this process is follicular loss immediately after grafting, possibly due to slow neovascularization, apoptosis and/or massive follicular recruitment. In vitro and in vivo studies indicate that the PI3K/PTEN/Akt and mTOR signalling pathways are involved in follicle activation. The transplantation process seems to be the major cause of primordial follicle activation after OTCTP but information about how cryopreservation itself impacts follicle activation is sparse. Study design, size, duration Whole murine ovaries (4-8-weeks old) were cryopreserved by slow freezing and exposed to LY294002 (a powerful PI3K inhibitor) or rapamycin (a specific mTOR inhibitor) during cryopreservation and/or organotypic in vitro culture for a 24 h or 2 days. Participants/materials, setting, methods Western Blot and immunofluorescence analyses were used to determine the activation of PI3K/PTEN/Akt and mTOR signalling pathways in murine ovaries cryopreserved and/or organotypically cultured with/without inhibitors.Follicles were quantified according to their maturation degree on H&E stained histological sections.  Main results and the role of chance Ratio of phosphorylated Akt or rps6 to total proteins (p-Akt/Akt and p-rps6/rps6) was increased in slow-frozen murine ovaries compared to control fresh ovaries, indicating an activation of the PI3K/PTEN/Akt and mTOR signalling pathways. The use of pharmacological inhibitors of follicle signalling pathways (LY294002 (25µM) and rapamycin (1µM)) during the cryopreservation process decreased p-Akt/Akt and p-rps6/rps6 ratios. In vitro organotypic culture for 24 h increased only the activation of the PI3K/PTEN/Akt pathway, as shown by increased p-Akt/Akt ratio in fresh ovaries cultured for 24 h compared to fresh non-cultured ovaries. This activation can be counteracted by cryopreservation of murine ovaries with rapamycin followed by in vitro culture for 24 h in the presence of LY294002. Follicle density quantifications indicated that when cryopreserved ovaries were maintained in culture for 2 days, a decrease of primordial follicle density concomitant with an increase of secondary and more mature follicles were found in comparison to slow-frozen/thawed ovaries without culture. Supplementation of the culture medium with LY294002 and rapamycin for 24 h or 2 days preserved primordial follicle densities compared to ovaries cultured without inhibitors. Limitations, reasons for caution This study is an in vitro study using murine ovaries. To analyze the efficiency of LY294002 and rapamycin to limit cryopreservation and transplantation induced follicle recruitment, these inhibitors should be tested in an in vivo model. Furthermore, these findings will need to be confirmed with human samples. Wider implications of the findings We showed for the first-time that the sequential use of pharmacological inhibitors, rapamycin during the slow freezing process followed by organotypic culture supplemented with LY294002, is effective to limit early primordial follicle depletion. Trial registration number /


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
C Terren ◽  
M Nisolle ◽  
C Munaut

Abstract Study question Which signalling pathways are implicated in primordial follicle activation induced by cryopreservation and/or organotypic culture? Is it possible to limit this activation through pharmacological inhibitors? Summary answer Our findings provide support for the hypothesis that mTOR and PI3K inhibitors might represent an attractive tool to delay cryopreservation- and culture-induced primordial follicle activation. What is known already Cryopreservation of ovarian tissue containing immature primordial follicles followed by auto-transplantation (OTCTP) is the only option available to preserve the fertility of prepubertal patients or patients requiring urgent therapy for aggressive malignancies. However, a major obstacle in this process is follicular loss immediately after grafting, possibly due to slow neovascularization, apoptosis and/or massive follicular recruitment. In vitro and in vivo studies indicate that the PI3K/PTEN/Akt and mTOR signalling pathways are involved in follicle activation. The transplantation process seems to be the major cause of primordial follicle activation after OTCTP but information about how cryopreservation itself impacts follicle activation is sparse. Study design, size, duration Whole murine ovaries (4–8-weeks old) were cryopreserved by slow freezing and exposed to LY294002 (a powerful PI3K inhibitor) or rapamycin (a specific mTOR inhibitor) during cryopreservation and/or organotypic in vitro culture for a 24 h or 2 days. Participants/materials, setting, methods Western Blot and immunofluorescence analyses were used to determine the activation of PI3K/PTEN/Akt and mTOR signalling pathways in murine ovaries cryopreserved and/or organotypically cultured with/without inhibitors.Follicles were quantified according to their maturation degree on H&E stained histological sections. Main results and the role of chance Ratio of phosphorylated Akt or rps6 to total proteins (p-Akt/Akt and p-rps6/rps6) was increased in slow-frozen murine ovaries compared to control fresh ovaries, indicating an activation of the PI3K/PTEN/Akt and mTOR signalling pathways. The use of pharmacological inhibitors of follicle signalling pathways (LY294002 (25µM) and rapamycin (1µM)) during the cryopreservation process decreased p-Akt/Akt and p-rps6/rps6 ratios. In vitro organotypic culture for 24 h increased only the activation of the PI3K/PTEN/Akt pathway, as shown by increased p-Akt/Akt ratio in fresh ovaries cultured for 24 h compared to fresh non-cultured ovaries. This activation can be counteracted by cryopreservation of murine ovaries with rapamycin followed by in vitro culture for 24 h in the presence of LY294002. Follicle density quantifications indicated that when cryopreserved ovaries were maintained in culture for 2 days, a decrease of primordial follicle density concomitant with an increase of secondary and more mature follicles were found in comparison to slow-frozen/thawed ovaries without culture. Supplementation of the culture medium with LY294002 and rapamycin for 24 h or 2 days preserved primordial follicle densities compared to ovaries cultured without inhibitors. Limitations, reasons for caution This study is an in vitro study using murine ovaries. To analyze the efficiency of LY294002 and rapamycin to limit cryopreservation and transplantation induced follicle recruitment, these inhibitors should be tested in an in vivo model. Furthermore, these findings will need to be confirmed with human samples. Wider implications of the findings: We showed for the first-time that the sequential use of pharmacological inhibitors, rapamycin during the slow freezing process followed by organotypic culture supplemented with LY294002, is effective to limit early primordial follicle depletion. Trial registration number /


2021 ◽  
Author(s):  
Hao Xu ◽  
Susan E LaFlamme

Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Our previous studies demonstrated that endothelial expression of laminin-411 and laminin-511 as well as α6 integrins is required for endothelial sprouting and tube formation in organotypic angiogenesis assays. These studies demonstrated that α6 integrins promote migration and regulate the expression of ANGPT2 and CXCR4 and that α6-dependent regulation of CXCR4 contributes to endothelial morphogenesis in our assays. However, these studies did not identify specific roles for the α6β1, α6β4, or α3β1 laminin-binding integrins. Here, we employ RNAi technology to parse the contributions of these integrins. We demonstrate that α6β4 promotes migration, sprouting, and tube formation, and also positively regulates the expression of ANGPT2, but does not promote CXCR4 expression, suggesting that α6β1 functions in this regulation. Additionally, we show that α3β1 regulates endothelial sprouting and tube formation, but is not required for migration in our assays or for the expression of ANGPT2 or CXCR4. Integrin α3β1 promotes the expression of NRP1 and ID1 RNAs, both of which are known to promote angiogenesis. Taken together, our results indicate that laminin-binding integrins play distinct roles during endothelial morphogenesis and do not compensate for one another in organotypic culture.


Sign in / Sign up

Export Citation Format

Share Document