Diffusible, retinal factors stimulate the barrier properties of junctional complexes in the retinal pigment epithelium

1993 ◽  
Vol 106 (3) ◽  
pp. 859-867 ◽  
Author(s):  
L.J. Rizzolo ◽  
Z.Q. Li

The retinal pigment epithelium lies at the interface between the neural retina and the choriocapillaris where it forms a blood-retinal barrier. Barrier function requires a polarized distribution of plasma membrane proteins and ‘tight’ tight junctions. During chicken embryogenesis, these features develop gradually. Although terminal junctional complexes are established by embryonic day 4, the distribution of the Na+/K(+)-APTase is not polarized in all cells of the epithelium until embryonic day 11. Similarly, the tight junctions of early embryos are leaky, but become tight by hatching (embryonic day 21). We used primary cell culture to examine the molecular basis of this gradual induction of polarized function. Pigment epithelium harvested from embryonic day 7, and cultured on filters, formed monolayers coupled by junctional complexes. The distribution of the Na+/K(+)-ATPase was non-polarized and the tight junctions were leaky with a transepithelial electrical resistance of 20–30 omega cm2. To isolate diffusible factors that stimulate the transepithelial electrical resistance, neural retinas from embryonic day 7, 14 or 16 embryos were incubated at 37 degrees C in base medium for 6 hours. The conditioned medium was added to the apical chamber of freshly cultured pigment epithelium. The distribution of the Na+/K(+)-ATPase became basolateral, and the electrical resistance gradually increased two to three times over 6 days. The increase in electrical resistance corresponded to a decrease in the rate of [3H]inulin diffusion across the monolayer. The effectiveness of the conditioned medium increased steadily with increasing age of the neural retina. Rather than increased production of an active factor, apparently different active factors were produced at different ages.(ABSTRACT TRUNCATED AT 250 WORDS)

2000 ◽  
Vol 279 (3) ◽  
pp. C744-C750 ◽  
Author(s):  
Yuriko Ban ◽  
Lawrence J. Rizzolo

The retinal pigment epithelium (RPE) is an epithelial region of the blood-brain barrier. During embryogenesis, permeability of the barrier gradually decreases. A culture model of RPE development revealed differences in how tight junctions regulate the paracellular diffusion of ionic and nonionic solutes (Ban Y and Rizzolo LJ. Mol Vis 3: 18, 1997). To examine these differences, the permeation of ionic and nonionic monosaccharides was compared with mannitol, and the permeation of the alkali metals was compared with sodium. The order of permeation was 3- O-methlyglucose = glucosamine = mannitol > N-acetylneuraminic acid. The ratio of N-acetylneuraminic acid to mannitol permeability decreased with embryonic age of the RPE or exposure to retinal-conditioned medium. Neither the ratio nor the permeability was affected by inhibiting transcytosis. The ratio increased if tight junctions were disrupted in low-calcium medium. The permeation of cations followed the sequence cesium > rubidium > potassium = sodium > lithium and was unaffected by embryonic age or retinal-conditioned medium. These results are considered in terms of a model in which the size distribution, charge, or number of open junctional pores could be modulated. It suggests that different subpopulations of pores can be regulated independently during development.


1992 ◽  
Vol 33 (4) ◽  
pp. 562-562
Author(s):  
Sigeki Takahasi ◽  
Izuru Asaoka ◽  
Hirosi Takamura ◽  
Takeo Satoh

Retina ◽  
2013 ◽  
pp. 605-617
Author(s):  
Louisa Wickham ◽  
Geoffrey P. Lewis ◽  
David G. Charteris ◽  
Steven K. Fisher

2002 ◽  
Vol 133 (4) ◽  
pp. 544-550 ◽  
Author(s):  
Norman D Radtke ◽  
Magdalene J Seiler ◽  
Robert B Aramant ◽  
Heywood M Petry ◽  
Diane J Pidwell

2006 ◽  
Vol 13 ◽  
pp. S200-S201
Author(s):  
Liesbeth Peeters ◽  
Niek Sanders ◽  
Koen Boussery ◽  
Johan Van de Voorde ◽  
Joseph Demeester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document