Oncostatin M induces basic fibroblast growth factor expression in endothelial cells and promotes endothelial cell proliferation, migration and spindle morphology

1997 ◽  
Vol 110 (7) ◽  
pp. 871-879 ◽  
Author(s):  
E.S. Wijelath ◽  
B. Carlsen ◽  
T. Cole ◽  
J. Chen ◽  
S. Kothari ◽  
...  

Oncostatin M (OSM), a pleiotropic cytokine originally isolated from supernatants of the U937 histiocytic lymphoma cell line, has been shown to have regulatory effects on a wide variety of cultured and tumor cells. We investigated the effects of OSM on basic fibroblast growth factor (bFGF) gene expression in bovine arterial endothelial (BAE) cells. Levels of bFGF mRNA transcripts were low in uninduced BAE cells, were maximal at 8 hours of exposure to OSM, and returned to control levels by 24 hours. Induction of bFGF mRNA transcripts by OSM was dose-dependent. Nuclear transcriptional run-on analysis demonstrated that exposure of BAE cells to OSM stimulated bFGF gene transcription. OSM treatment of BAE cells enhanced the synthesis of bFGF protein as determined by ELISA assays. Immunocytochemistry studies demonstrated the presence of low levels of bFGF protein within the cytoplasm in uninduced cells. After stimulation for 8 hours with OSM there was significant staining for bFGF in the cytoplasm. However, 24 hours after exposure to OSM, bFGF antigen was located only within the nuclei. Western blot analysis demonstrated that OSM stimulated predominantly the synthesis of a 22 kDa form of bFGF. In addition, OSM stimulated endothelial cell proliferation and migration as well as acquisition of a spindle shape. Phosphorothioate antisense oligonucleotide directed against bFGF inhibited OSM induced BAE cell proliferation and spindle shape formation but had only a minimal effect on migration. The levels of the 22 kDa form of bFGF were reduced by antisense treatment indicating that OSM induced proliferation and morphology change is likely to be regulated by intracellular bFGF. Our studies suggest that OSM released at sites of vascular injury could stimulate angiogenesis by inducing bFGF synthesis, endothelial cell proliferation and migration.

2007 ◽  
Vol 282 (12) ◽  
pp. 8741-8748 ◽  
Author(s):  
Tatsuya Fujikawa ◽  
Hidenori Shiraha ◽  
Naoki Ueda ◽  
Nobuyuki Takaoka ◽  
Yutaka Nakanishi ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4145-4154 ◽  
Author(s):  
Nelly A. Abdel-Malak ◽  
Coimbatore B. Srikant ◽  
Arnold S. Kristof ◽  
Sheldon A. Magder ◽  
John A. Di Battista ◽  
...  

Abstract Angiopoietin-1 (Ang-1), ligand for the endothelial cell–specific Tie-2 receptors, promotes migration and proliferation of endothelial cells, however, whether these effects are promoted through the release of a secondary mediator remains unclear. In this study, we assessed whether Ang-1 promotes endothelial cell migration and proliferation through the release of interleukin-8 (IL-8). Ang-1 elicited in human umbilical vein endothelial cells (HUVECs) a dose- and time-dependent increase in IL-8 production as a result of induction of mRNA and enhanced mRNA stability of IL-8 transcripts. IL-8 production is also elevated in HUVECs transduced with retroviruses expressing Ang-1. Neutralization of IL-8 in these cells with a specific antibody significantly attenuated proliferation and migration and induced caspase-3 activation. Exposure to Ang-1 triggered a significant increase in DNA binding of activator protein-1 (AP-1) to a relatively short fragment of IL-8 promoter. Upstream from the AP-1 complex, up-regulation of IL-8 transcription by Ang-1 was mediated through the Erk1/2, SAPK/JNK, and PI-3 kinase pathways, which triggered c-Jun phosphorylation on Ser63 and Ser73. These results suggest that promotion of endothelial migration and proliferation by Ang-1 is mediated, in part, through the production of IL-8, which acts in an autocrine fashion to suppress apoptosis and facilitate cell proliferation and migration.


Sign in / Sign up

Export Citation Format

Share Document