proliferation and migration
Recently Published Documents


TOTAL DOCUMENTS

4471
(FIVE YEARS 1959)

H-INDEX

85
(FIVE YEARS 15)

2022 ◽  
Vol 12 (5) ◽  
pp. 1059-1064
Author(s):  
Li Gao ◽  
Shulan Lv ◽  
Yan Zhu

ADAM-17 is a membrane-bound protease and highly expressed in multiple tumors. BMSCs carrying target genes are delivered to damaged sites. This study aimed to investigate the mechanism underlying BMSCs with ADAM-17 in cervical cancer (CC). BMSCs were transfected with ADAM-17 mimics and co-cultured with CC cells followed by analysis of cell proliferation and migration by MTT assay and scratch assay, ADAM-17 and target genes (LAMB3, Robol) level by Western blot and RT-qPCR. As the effectiveness of ADAM-17 transfection was confirmed by its increased level, the presence of empty vector rarely affected ADAM-17 expression and biological activities of CC cells compared to control group (p > 0.05). BMSCs with ADAM-17 overexpression increased CC cell proliferation and enhanced scratch healing rate (p < 0.05), accompanied with upregulated LAMB3 and Robol. The difference in LAMB3 and Robol expression between empty vector group and control group did not reach a significance. In conclsuion, this study elucidates that BMSCs with ADAM-17 overexpression promotes CC cell progression through up-regulation of LAMB3 and Robol and activation EGFR/PI3K/Akt signaling, providing a novel BMSC-based targeted therapy.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Saidu Sani ◽  
Nikita Pallaoro ◽  
Mélissa Messe ◽  
Chloé Bernhard ◽  
Nelly Etienne-Selloum ◽  
...  

Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiabin Pan ◽  
Shiyang Sheng ◽  
Ling Ye ◽  
Xiaonan Xu ◽  
Yizhao Ma ◽  
...  

Abstract Background Glioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs’ alteration remain unkown. Methods We collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs. Results We first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs. Conclusion Our findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-22
Author(s):  
Guofu Zhang ◽  
Hui Yu ◽  
Jingjing Su ◽  
Chao Chi ◽  
Lide Su ◽  
...  

Atherosclerosis is the most notable cardiovascular disease, the latter being the main cause of death globally. Endothelial cell dysfunction plays a major role in the pathogenesis of atherosclerosis. However, it is currently unclear which genes are involved between endothelial cell dysfunction and atherosclerosis. This study was aimed at identifying these genes. Based on the GSE83500 dataset, the quantification of endothelial cell function was conducted using single-sample gene set enrichment analysis; the coexpression modules were conducted using weighted correlation network analysis. After building module-trait relationships, tan and yellow modules were regarded as hub modules. 10 hub genes from each hub module were identified by the protein-protein interaction network analysis. The key genes (RAB5A, CTTN, ITGB1, and MMP9) were obtained by comparing the expression differences of the hub gene between atherosclerotic and normal groups from the GSE28829 and GSE43292 datasets, respectively. ROC analysis showed the diagnostic value of key genes. Moreover, the differential expression of key genes in normal and atherosclerotic aortic walls was verified. In vitro, we establish a model of ox-LDL-injured endothelial cells and transfect RAB5A overexpression and shRNA plasmids. The results showed that overexpression of RAB5A ameliorates the proliferation and migration function of ox-LDL-injured endothelial cells, including the ability of tubule formation. It was speculated that the interferon response, Notch signaling pathways, etc. were involved in this function of RAB5A by using gene set variation analysis. With the multiple bioinformatics analysis methods, we detected that yellow and tan modules are related to the abnormal proliferation and migration of endothelial cells associated with atherosclerosis. RAB5A, CTTN, ITGB1, and MMP9 can be used as potential targets for therapy and diagnostic markers. In vitro, overexpression of RAB5A can ameliorate the proliferation and migration function of ox-LDL-injured endothelial cells, and the possible molecules involved in this process were speculated.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Qingyu Meng ◽  
Xichun Li ◽  
Mingyu Zhao ◽  
Shusen Lin ◽  
Xiangwen Yu ◽  
...  

This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group ( p = 0.003 ) 6 months after operation ( p = 0.047 ) and 12 months after operation ( p = 0.011 ). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zeyu Wang ◽  
Yuyao Mo ◽  
Ying Tan ◽  
Zhihui Wen ◽  
Ziyu Dai ◽  
...  

Gliomas are malignant tumors that originate from the central nervous system. The aldehyde dehydrogenase family has been documented to affect cancer progression; however, its role in gliomas remains largely unexplored. Bulk RNA-seq analysis and single-cell RNA-Seq analysis were performed to explore the role of the aldehyde dehydrogenases family in gliomas. Training cohort contained The Cancer Genome Atlas data, while data from Chinese Glioma Genome Atlas and Gene Expression Omnibus were set as validation cohorts. Our scoring system based on the aldehyde dehydrogenases family suggested that high-scoring samples were associated with worse survival outcomes. The enrichment score of pathways were calculated by AUCell to substantiate the biofunction prediction results that the aldehyde dehydrogenases family affected glioma progression by modulating tumor cell proliferation, migration, and immune landscape. Tumor immune landscape was mapped from high-scoring samples. Moreover, ALDH3B1 and ALDH16A1, two main contributors of the scoring system, could affect glioblastoma cell proliferation and migration by inducing cell-cycle arrest and the epithelial-mesenchymal transition. Taken together, the aldehyde dehydrogenases family could play a significant role in the tumor immune landscape and could be used to predict patient prognosis. ALDH3B1 and ALDH16A1 could influence tumor cell proliferation and migration.


Sign in / Sign up

Export Citation Format

Share Document