Basonuclin is associated with the ribosomal RNA genes on human keratinocyte mitotic chromosomes

1999 ◽  
Vol 112 (18) ◽  
pp. 3039-3047 ◽  
Author(s):  
H. Tseng ◽  
J.A. Biegel ◽  
R.S. Brown

Basonuclin is a zinc finger protein mainly expressed in keratinocytes of the basal layer of epidermis and the outer root sheath of hair follicles. It is also found in abundance in the germ cells of testis and ovary. In cultured keratinocytes, basonuclin is associated with chromatin in all phases of the cell cycle, including mitosis. By immunocytochemical methods, we demonstrate here that in mitosis basonuclin is associated with the short arms of the acrocentric chromosomes and with other loci on many metaphase chromosomes of human keratinocytes. Using the evolutionarily highly conserved N-terminal pair of zinc fingers in an electrophoresis mobility shift assay, we demonstrate that the DNA target sequences of basonuclin on the acrocentric chromosomes are likely to be within the promoter region of the 45S rRNA gene transcription unit. DNase I footprinting shows that basonuclin zinc fingers interact with the upstream control element of this promoter, which is necessary for the high level of transcription of the rRNA genes. This result suggests that basonuclin may be a tissue-specific transcription factor for the ribosomal RNA genes.

2020 ◽  
Author(s):  
Abigail Hui En Chan ◽  
Kittipong Chaisiri ◽  
Serge Morand ◽  
Naowarat Saralamba ◽  
Urusa Thaenkham

Abstract Background Molecular advances have accelerated our understanding of nematode systematics and taxonomy. However, comparative analyzes between various genetic markers have led to discrepancies in nematode phylogenies. This study aimed to evaluate the suitability of using mitochondrial 12S and 16S ribosomal RNA genes for nematode molecular systematics. Methods To study the suitability of mitochondrial 12S and 16S ribosomal RNA genes as genetic markers for nematode molecular systematics, we compared them with the other commonly used genetic markers, nuclear internal transcribed spacer 1 and 2 regions, nuclear 18S and 28S ribosomal RNA genes, and mitochondrial cytochrome c oxidase subunit 1 gene. After that, phylum-wide primers for mitochondrial 12S and 16S ribosomal RNA genes were designed, and parasitic nematodes of humans and animals from 75 taxa with 21 representative species were inferred through phylogenetic analyzes. Phylogenetic analyzes were carried out using maximum likelihood and Bayesian inference algorithms. Results The phylogenetic relationships of nematodes based on the mitochondrial 12S rRNA gene supported the monophyly of nematodes in clades I, IV, and V, reinforcing the potential of this gene as a genetic marker for nematode systematics. In contrast, the mitochondrial 16S rRNA gene only supported the monophyly of clades I and V, providing evidence that the 12S rRNA gene is more suitable for nematode molecular systematics. In this study, subclades of clade III containing various nematode families were not monophyletic when the 16S or 12S rRNA gene was used as the genetic marker. This is similar to the phylogenetic relationship revealed by previous studies using whole mitochondrial genomes as genetic markers. Conclusions This study supports the use of the 12S rRNA gene as a genetic marker for studying the molecular systematics of nematodes to understand intra-phyla relationships. Phylum-wide primers for nematodes using mitochondrial ribosomal genes were prepared, which may enhance future studies. Furthermore, sufficient genetic variation in the mitochondrial 12S and 16S rRNA genes between species also allowed for accurate taxonomy to species level, revealing the potential of these two genes as genetic markers for DNA barcoding.


Genome ◽  
1989 ◽  
Vol 32 (6) ◽  
pp. 1091-1095 ◽  
Author(s):  
Halina Skorupska ◽  
Marc C. Albertsen ◽  
Kim D. Langholz ◽  
Reid G. Palmer

A biotinylated maize rRNA probe was hybridized to soybean nuclei. Hybridization was detected by using a streptavidin horseradish peroxidase biotin system. The procedure used enabled detection of heterologous complementary 18S and 25S rRNA coding genes in soybean. In diploid cultivars 'Hark' and 'Lincoln' a single pair of satellited chromosomes was present and two binding sites were detected at interphase. In plants trisomic for the satellited chromosome, three sites were observed, and in tetraploid nuclei, four sites were seen. The in situ hybridization results indicated that, for ribosomal RNA genes, Glycine max behaves as a diploid. We discuss the possibility of loss of a pair of satellited chromosomes in the evolution of soybean.Key words: biotin-labeled probe, rRNA genes, ploidy, Glycine max.


2020 ◽  
Author(s):  
Abigail Hui En Chan ◽  
Kittipong Chaisiri ◽  
Serge Morand ◽  
Naowarat Saralamba ◽  
Urusa Thaenkham

Abstract Background: Molecular advances have accelerated our understanding of nematode systematics and taxonomy. However, comparative analyzes between various genetic markers have led to discrepancies in nematode phylogenies. This study aimed to evaluate the suitability of using mitochondrial 12S and 16S ribosomal RNA genes for nematode molecular systematics.Methods: To study the suitability of mitochondrial 12S and 16S ribosomal RNA genes as genetic markers for nematode molecular systematics, we compared them with the other commonly used genetic markers, nuclear internal transcribed spacer 1 and 2 regions, nuclear 18S and 28S ribosomal RNA genes, and mitochondrial cytochrome c oxidase subunit 1 gene. After that, phylum-wide primers for mitochondrial 12S and 16S ribosomal RNA genes were designed, and parasitic nematodes of humans and animals from 75 taxa with 21 representative species were inferred through phylogenetic analyzes. Phylogenetic analyzes were carried out using maximum likelihood and Bayesian inference algorithms. Results: The phylogenetic relationships of nematodes based on the mitochondrial 12S rRNA gene supported the monophyly of nematodes in clades I, IV, and V, reinforcing the potential of this gene as a genetic marker for nematode systematics. In contrast, the mitochondrial 16S rRNA gene only supported the monophyly of clades I and V, providing evidence that the 12S rRNA gene is more suitable for nematode molecular systematics. In this study, subclades of clade III containing various nematode families were not monophyletic when the 16S or 12S rRNA gene was used as the genetic marker. This is similar to the phylogenetic relationship revealed by previous studies using whole mitochondrial genomes as genetic markers. Conclusions: This study supports the use of the 12S rRNA gene as a genetic marker for studying the molecular systematics of nematodes to understand intra-phyla relationships. Phylum-wide primers for nematodes using mitochondrial ribosomal genes were prepared, which may enhance future studies. Furthermore, sufficient genetic variation in the mitochondrial 12S and 16S rRNA genes between species also allowed for accurate taxonomy to species level, revealing the potential of these two genes as genetic markers for DNA barcoding.


Genome ◽  
2000 ◽  
Vol 43 (1) ◽  
pp. 213-215 ◽  
Author(s):  
Guy Drouin

The analyses of previously described 5S rRNA gene sequences show that some of the expressed 5S rRNA genes present in the mouse and rat genomes were derived from the retrotransposition of 5S rRNA transcripts. These analyses demonstrate that new 5S rRNA gene copies can originate by retrotransposition and that some of these retrotranscribed genes are expressed. Key words: 5S ribosomal RNA genes, retrotransposition, retroposons.


1981 ◽  
Vol 38 (1) ◽  
pp. 1-7 ◽  
Author(s):  
R. H. Maddern

SUMMARYThe genes coding for the 18s and 28s ribosomal RNA (rRNA) are present on both the X and Y chromosomes of D. melanogaster at a site known as the bobbed locus. Exchange was observed in males between a normally orientated X and Y chromosome (Dp(1; 1) scv1 and BSY y31d) with a frequency of 0·079%. One-quarter (7 in 27) of these exchange products between two + chromosomes which both carried sufficient rRNA genes for a bb+ phenotype exhibited a bb phenotype. Evidence is presented that one-half, and possibly all, of the exchanges involved the repetitive bb genes. These results together with those reported by Palumbo, Caizzi & Ritossa (1973) imply that the repeated bb genes of either (or both) the X or Y chromosome are not arranged with uniform polarity and, further, that spermatogonial exchange between the X and Y chromosomes may be restricted to the bb loci.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 963-968 ◽  
Author(s):  
R. B. Flavell

Ribosomal RNA genes are organised in tandem arrays at complex loci called nucleolus organisers. The structure of a locus and of a wheat rRNA gene is described in detail. Active or potentially active genes are in the nucleolus during interphase, while inactive genes are excluded from the nucleolus. Genetic variation exists within a species for the number of the rRNA genes at a locus and also for the structure of the intergenic, regulatory DNA. This variation can affect the activity of a locus, relative to that of another in the same cell and the proportion of the rRNA genes at a locus included in the nucleolus. The active loci are enriched with genes that are not methylated at specific CpG residues in the intergenic regulatory DNA and that are in a chromatin conformation accessible to DNase I. A model is presented that attempts to relate the structural variation between genes to the differential expression and nucleolar organisation of the rRNA genes at different loci. The model is based on the affinity of proteins, in limiting concentration, to specific regulatory DNA sequences. These sequences are subject to change as a result of mechanisms that can spread mutations through a locus. The resulting variation, which may not be eliminated by selection unless it is very deleterious and accounts for a large part of the total rDNA, may be one reason why plants maintain a large excess of ribosomal RNA genes.Key words: nucleolus, ribosomal RNA gene, methylation.


2020 ◽  
Author(s):  
Abigail Hui En Chan ◽  
Kittipong Chaisiri ◽  
Serge Morand ◽  
Naowarat Saralamba ◽  
Urusa Thaenkham

Abstract Background Molecular advances have accelerated our understanding of nematode systematics and taxonomy. However, comparative analyzes between various genetic markers have led to discrepancies in nematode phylogenies. This study aimed to evaluate the suitability of using mitochondrial 12S and 16S ribosomal RNA genes for nematode molecular systematics. Methods To study the suitability of mitochondrial 12S and 16S ribosomal RNA genes as genetic markers for nematode molecular systematics, we compared them with the other commonly used genetic markers, nuclear internal transcribed spacer 1 and 2 regions, nuclear 18S and 28S ribosomal RNA genes, and mitochondrial cytochrome c oxidase subunit 1 gene. After that, phylum-wide primers for mitochondrial 12S and 16S ribosomal RNA genes were designed, and parasitic nematodes of humans and animals from 75 taxa with 21 representative species were inferred through phylogenetic analyzes. Phylogenetic analyzes were carried out using maximum likelihood and Bayesian inference algorithms. Results The phylogenetic relationships of nematodes based on the mitochondrial 12S rRNA gene supported the monophyly of nematodes in clades I, IV, and V, reinforcing the potential of this gene as a genetic marker for nematode systematics. In contrast, the mitochondrial 16S rRNA gene only supported the monophyly of clades I and V, providing evidence that the 12S rRNA gene is more suitable for nematode molecular systematics. In this study, subclades of clade III containing various nematode families were not monophyletic when the 16S or 12S rRNA gene was used as the genetic marker. This is similar to the phylogenetic relationship revealed by previous studies using whole mitochondrial genomes as genetic markers. Conclusions This study supports the use of the 12S rRNA gene as a genetic marker for studying the molecular systematics of nematodes to understand intra-phyla relationships. Phylum-wide primers for nematodes using mitochondrial ribosomal genes were prepared, which may enhance future studies. Furthermore, sufficient genetic variation in the mitochondrial 12S and 16S rRNA genes between species also allowed for accurate taxonomy to species level, revealing the potential of these two genes as genetic markers for DNA barcoding.


Sign in / Sign up

Export Citation Format

Share Document