uniform polarity
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Healthcare ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 488
Author(s):  
Satyaki Roy ◽  
Preetam Ghosh

COVID-19 is a global health emergency that has fundamentally altered human life. Public perception about COVID-19 greatly informs public policymaking and charts the course of present and future mitigation strategies. Existing approaches to gain insights into the evolving nature of public opinion has led to the application of natural language processing on public interaction data acquired from online surveys and social media. In this work, we apply supervised and unsupervised machine learning approaches on global Twitter data to learn the opinions about adoption of mitigation strategies such as social distancing, masks, and vaccination, as well as the effect of socioeconomic, demographic, political, and epidemiological features on perceptions. Our study reveals the uniform polarity in public sentiment on the basis of spatial proximity or COVID-19 infection rates. We show the reservation about the adoption of social distancing and vaccination across the world and also quantify the influence of airport traffic, homelessness, followed by old age and race on sentiment of netizens within the US.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Urko del Castillo ◽  
Michael Winding ◽  
Wen Lu ◽  
Vladimir I Gelfand

In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switches from mixed to uniform polarity with plus-end-out. Dynein knockdown prevents this rearrangement and results in microtubules of mixed orientation in axons and accumulation of microtubule minus-ends at axon tips. Microtubule reorganization requires recruitment of dynein to the actin cortex, as actin depolymerization phenocopies dynein depletion, and direct recruitment of dynein to the membrane bypasses the actin requirement. Our results show that cortical dynein slides ‘minus-end-out’ microtubules from the axon, generating uniform microtubule arrays. We speculate that differences in microtubule orientation between axons and dendrites could be dictated by differential activity of cortical dynein.


2008 ◽  
Vol 182 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Ge Yang ◽  
Lisa A. Cameron ◽  
Paul S. Maddox ◽  
Edward D. Salmon ◽  
Gaudenz Danuser

Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find that the flux velocity decreases near spindle poles by ∼20%. The regional variation is independent of functional kinetochores and centrosomes and is suppressed by inhibition of dynein/dynactin, kinesin-5, or both. Statistical analysis reveals that tubulin flows in two distinct velocity modes. We propose an association of these modes with two architecturally distinct yet spatially overlapping and dynamically cross-linked arrays of microtubules: focused polar microtubule arrays of a uniform polarity and slower flux velocities are interconnected by a dense barrel-like microtubule array of antiparallel polarities and faster flux velocities.


2005 ◽  
Vol 61 (5) ◽  
pp. 473-480 ◽  
Author(s):  
K. Łukaszewicz ◽  
A. Pietraszko ◽  
M. Kucharska

The incommensurately modulated antiferroelectric phase of sodium nitrite, NaNO2, transforms at TN = 437.7 K to the short-range modulated paraelectric phase. The apparently discontinuous phase transition is accompanied by characteristic changes in the diffraction pattern. Contrary to the well known modulated structures with sharp satellite reflections, the diffraction pattern of a short-range modulated structure contains diffuse satellite reflections. The short-range modulated crystal structure of the paraelectric phase of sodium nitrite has been analysed by the Reverse Monte Carlo (RMC) simulation of X-ray diffuse scattering. The crystal structure of sodium nitrite may be regarded as consisting of [Na+NO_2^{-}]∞ rows running along the polar b axis. One can expect long fragments of rows with uniform polarity The assumption that single [Na+NO_2^-]∞ rows are polar with uniform polarity proved to be a convenient approximation which is in good agreement with the observed diffraction pattern. The distribution of (+)- and (−)-[Na+NO_2^-]∞ polar rows crossing the (010) plane of short-range modulated NaNO2 revealed by RMC shows nanodomains consisting of distorted fragments of a sinusoidally modulated crystal structure. The size of the nanodomains and the degree of order in paraelectric NaNO2 decreases with temperature.


2003 ◽  
Vol 100 (12) ◽  
pp. 7081-7086 ◽  
Author(s):  
D. A. Dombeck ◽  
K. A. Kasischke ◽  
H. D. Vishwasrao ◽  
M. Ingelsson ◽  
B. T. Hyman ◽  
...  

1997 ◽  
Vol 136 (6) ◽  
pp. 1287-1305 ◽  
Author(s):  
Louise P. Cramer ◽  
Margaret Siebert ◽  
Timothy J. Mitchison

We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward. By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body. This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.


1993 ◽  
Vol 120 (6) ◽  
pp. 1427-1437 ◽  
Author(s):  
P W Baas ◽  
F J Ahmad

It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine-axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that highly efficient mechanisms exist in the neuron to transport preassembled MTs from the cell body into the axon. These mechanisms are active even at the expense of the cell body, and even under conditions that promote some MT disassembly in the neuron. MT polarity analyses indicate that the MTs within the vinblastine-axons, like those in control axons, are uniformly plus-end-distal.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 116 (5) ◽  
pp. 1231-1241 ◽  
Author(s):  
P W Baas ◽  
F J Ahmad

Microtubules (MTs) in the axon have a uniform polarity orientation that is recapitulated during recovery from episodes of MT depolymerization (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu. 1984. J. Cell Biol. 99:1289-1295). This tight regulation of their organization indicates that axonal MTs are spatially regulated by discrete nucleating structures comparable in function to the centrosome. Several authors have proposed that an especially stable class of MTs in the axon may serve as these nucleating structures. In a previous report (Baas, P. W., and M. M. Black. 1990. J. Cell Biol. 111:495-509), we determined that the axons of cultured sympathetic neurons contain two classes of MT polymer, stable and labile, that differ in their sensitivity to nocodazole by roughly 35-fold. The stable and labile polymer represent long-lived and recently assembled polymer, respectively. We also determined that these two classes of polymer can be visually distinguished at the immunoelectron microscopic level based on their content of tyrosinated alpha-tubulin: the labile polymer stains densely, while the stable polymer does not stain. In the present study, we have taken advantage of these observations to directly identify MT nucleating structures in the axon. Neuron cultures were treated with nocodazole for 6 h to completely depolymerize the labile polymer in the axon, and substantially shorten the stable polymer. The cultures were then rinsed free of the drug, permitted to reassemble polymer for various periods of time, and prepared for immunoelectron microscopic localization of tyrosinated alpha-tubulin. Serial reconstruction of consecutive thin sections was undertaken to determine the spatial relationship between the stable MTs and the newly assembled polymer. All of the new polymer assembled in direct continuity with the plus ends of stable MTs, indicating that these ends are assembly competent, and hence capable of acting as nucleating structures. Our results further indicate that no self-assembly of MTs occurs in the axon, nor do any MT nucleating structures exist in the axon other than the plus ends of stable MTs. Thus the plus ends of stable MTs are the exclusive nucleating structures for MTs in the axon.


1991 ◽  
Vol 115 (5) ◽  
pp. 1333-1344 ◽  
Author(s):  
P W Baas ◽  
T P Pienkowski ◽  
K S Kosik

We have indirectly analyzed the role of tau in generating the highly organized microtubule (MT) array of the axon. Axons contain MT arrays of uniform polarity orientation, plus ends distal to the cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-673). Surprisingly, these MTs do not radiate from a single discrete nucleating structure in the cell body (Sharp, G. A., K. Weber, and M. Osborn. 1982. Eur. J. Cell Biol. 29: 97-103), but rather stop and start at multiple sites along the length of the axon (Bray, D., and M. B. Bunge. 1981. J. Neurocytol. 10:589-605). When Sf9 ovarian cells are induced to express high levels of tau protein, they develop cellular processes which are similar in appearance to axons and which contain dense arrays of MTs (Knops, J., K. S. Kosik, G. Lee, J. D. Pardee, L. Cohen-Gould, and L. McConlogue. 1991. J. Cell Biol. 114:725-734). We have analyzed the organization of MTs within these arrays, and determined it to be similar, but not identical, to the organization of MTs within the axon. The caliber, MT number, and MT density vary significantly from process to process, but on average are manyfold higher in the tau-induced processes than typically found in axons. Greater than 89% of the MTs in the processes are oriented with their plus ends distal to the cell body, and this proportion is even higher in the processes that are most similar to axons with regard to caliber, MT number, and MT density. Similar to the situation in the axon, MTs are discontinuous along the length of the tau-induced processes, and do not emanate from any observable nucleating structure in the cell body. We have also identified bundles of MTs throughout the cell bodies of the Sf9 cells induced to express tau. Similar to the MT arrays in the processes, these MT bundles are not visibly associated with any other cytological structures that might regulate their polarity orientation. Nevertheless, these bundles consist of MTs most (greater than 82%) of which have the same polarity orientation. Collectively, these results suggest that tau may play a fundamental role in generating MT organization in the axon. In particular, a key property of tau may be to bundle MTs preferentially with the same polarity orientation.


Sign in / Sign up

Export Citation Format

Share Document