calling behavior
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 25)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Patrick Wolff ◽  
Brett DeGregorio ◽  
Aaron Rice

The management and recovery of threatened and endangered amphibians on Department of Defense (DoD) lands relies on an understanding of their distribution and abundance. Fortunately, most anuran species can be surveyed acoustically using vocalizations during the breeding season. This work demonstrated the use of subsurface passive acoustic monitoring (SPAM) to survey for rare underwater-calling, at-risk anuran species on DoD installations. We evaluated the performance of SPAM relative to traditional passive acoustic monitoring (PAM) (microphone) and human manual calling survey (MCS) methods. Results showed that SPAM outperformed PAM and MCS in validation experiments where calls were generated underwater; SPAM was less successful than PAM and MCS in the field demonstration. Most leopard frog calls were apparently produced in air despite previous reports of extensive underwater-calling behavior. This project highlights how acoustic information can help address a data gap in the ecology of at-risk species, which can help refine future survey methodology and management efforts. Ultimately, the utility of SPAM for underwater-calling species will depend on the focal species, the landscape where it occurs, and technological considerations available to the surveyor. SPAM is more expensive than traditional methods but, in some situations, may be the only way to effectively detect species.


2021 ◽  
Author(s):  
Michelle E.H. Fournet ◽  
Leanna P. Matthews ◽  
Annie Bartlett ◽  
Natalie Mastick ◽  
Fred Sharpe ◽  
...  

AbstractHumpback whales (Megaptera novaeangliae) produce calls across age and sex class and throughout their migratory range. Despite growing interest in calling behavior, the function of most calls is unknown. Among identified call types, the ‘whup’ is ubiquitous, and innate, and may serve as a contact call. We conducted an acoustic playback experiment combined with passive acoustic monitoring and visual observations to test the function of the whup on a Southeast Alaskan foraging ground. Using a before-during-after design, we broadcasted either a control sound or a unique whup call sequence. We investigated the change in whup rates (whups/whale/10 minutes) in response to treatment (whup or control) and period (before, during, or after). In 100% of the conspecific trials, whup rates increased during broadcasts, and whup rates were significantly higher than in before or after periods. There was no significant difference in whup rates between before and after periods during conspecific trials. In control trials, there were no significant differences in whup rates between before, during, or after periods. Neither whups nor control playbacks elicited an approach response. Humpback whale vocal responses to whup playbacks suggest that whups function as a contact call, but not necessarily as an aggregation signal.


2021 ◽  
Vol 11 (8) ◽  
pp. 1053
Author(s):  
Giulia Costa ◽  
Marcello Serra ◽  
Nicola Simola

Rats emit ultrasonic vocalizations (USVs) in situations with emotional valence, and USVs have also been proposed as a marker for memories conditioned to those situations. This study investigated whether USV emissions can predict and/or be associated with the behavior of rats in tests that evaluate unconditioned memory. To this end, rats were subjected to “tickling”, a procedure of heterospecific play that has emotional valence and elicits the emission of USVs, and afterwards evaluated in the novel object recognition test (NOR) and in the single trial continuous spontaneous alternation behavior (SAB) test in a Y-maze. The number of 22-kHz USVs (aversive) and 50-kHz USVs (appetitive) emitted in response to tickling and during NOR and SAB tests were scored, and the correlations among them and with rats’ behavior evaluated. Rats emitted 50-kHz USVs, but not 22-kHz USVs, during the NOR and SAB tests, and such calling behavior was not linked with the behavioral readouts indicative of memory function in either test. However, rats that prevalently emitted 22-kHz USVs in response to tickling displayed an impaired NOR performance. These findings suggest that measuring the emission of USVs could be of interest in studies of unconditioned memory, at least with regard to 22-kHz USVs.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 319
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Climatic conditions represent one of the main constraints that influence avian calling behavior. Here, we monitored the daily calling activity of the Undulated Tinamou (Crypturellus undulatus) and the Chaco Chachalaca (Ortalis canicollis) during the dry and wet seasons in the Brazilian Pantanal. We aimed to assess the effects of climate predictors on the vocal activity of these focal species and evaluate whether these effects may vary among seasons. Air temperature was positively associated with the daily calling activity of both species during the dry season. However, the vocal activity of both species was unrelated to air temperature during the wet season, when higher temperatures occur. Daily rainfall was positively related to the daily calling activity of both species during the dry season, when rainfall events are scarce and seem to act as a trigger for breeding phenology of the focal species. Nonetheless, air temperature was negatively associated with the daily calling activity of the Undulated Tinamou during the wet season, when rainfall was abundant. This study improves our understanding of the vocal behavior of tropical birds and their relationships with climate, but further research is needed to elucidate the mechanisms behind the associations found in our study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ian N. Durbach ◽  
Catriona M. Harris ◽  
Cameron Martin ◽  
Tyler A. Helble ◽  
E. Elizabeth Henderson ◽  
...  

Many marine mammals rely on sound for foraging, maintaining group cohesion, navigation, finding mates, and avoiding predators. These behaviors are potentially disrupted by anthropogenic noise. Behavioral responses to sonar have been observed in a number of baleen whale species but relatively little is known about the responses of minke whales (Balaenoptera acutorostrata). Previous analyses demonstrated a spatial redistribution of localizations derived from passive acoustic detections in response to sonar activity, but the lack of a mechanism for associating localizations prevented discriminating between movement and cessation of calling as possible explanations for this redistribution. Here we extend previous analyses by including an association mechanism, allowing us to differentiate between movement responses and calling responses, and to provide direct evidence of horizontal avoidance responses by individual minke whales to sonar during U.S. Navy training activities. We fitted hidden Markov models to 627 tracks that were reconstructed from 3 years of minke whale (B. acutorostrata) vocalizations recorded before, during, and after naval training events at the U.S. Navy’s Pacific Missile Range Facility, Kauai, Hawaii. The fitted models were used to identify different movement behaviors and to investigate the effect of sonar activity on these behaviors. Movement was faster and more directed during sonar exposure than in baseline phases. The mean direction of movement differed during sonar exposure, and was consistent with movement away from sonar-producing ships. Animals were also more likely to cease calling during sonar. There was substantial individual variation in response. Our findings add large-sample support to previous demonstrations of horizontal avoidance responses by individual minke whales to sonar in controlled exposure experiments, and demonstrate the complex nature of behavioral responses to sonar activity: some, but not all, whales exhibited behavioral changes, which took the form of horizontal avoidance or ceasing to call.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ke Deng ◽  
Ya Zhou ◽  
Qiao-Ling He ◽  
Bi-Cheng Zhu ◽  
Tong-Liang Wang ◽  
...  

Abstract Background Signal detection is crucial to survival and successful reproduction, and animals often modify behavioral decisions based on information they obtained from the social context. Undeniably, the decision-making in male-male competition and female choice of anurans (frogs and toads) depends heavily on acoustic signals. However, increasing empirical evidence suggests that additional or alternative types of cue (e.g., visual, chemical, and vibratory) can be used to detect, discriminate and locate conspecifics in many anuran species. Nevertheless, few studies have investigated whether conspecific odor cues affect male’s calling behavior. In this study, we conducted an experiment to investigate whether and how different chemical cues (male odors, female odors, and stress odors) from conspecifics affect male’s calling strategies in serrate-legged small treefrogs (Kurixalus odontotarsus), and whether the combined chemical and acoustic stimuli have additive effects on calling behavior or not. Results We found that compared with female odors, male K. odontotarsus reduced calling investment in response to male odors or stress odors, in the absence of rival’s advertisement calls. When odor stimuli and advertisement calls were presented simultaneously, however, there were no differences in the vocal response of focal males among odor groups. Conclusions These results provide evidence that male treefrogs switch calling investment according to different odor cues from conspecifics, and further demonstrate that calling behavior can be affected by chemical cues in anuran species. Our study highlights the potential role of airborne chemical cues in sex identification and contributes to increase our understanding of anuran communication.


2021 ◽  
Vol 149 (4) ◽  
pp. A14-A14
Author(s):  
Annebelle Kok ◽  
Kelly M. Bishop ◽  
Ella B. Kim ◽  
Tetyana Margolina ◽  
John E. Joseph ◽  
...  
Keyword(s):  

2021 ◽  
Vol 662 ◽  
pp. 115-124
Author(s):  
AG Mackiewicz ◽  
RL Putland ◽  
AF Mensinger

In coastal waters, anthropogenic activity and its associated sound have been shown to negatively impact aquatic taxa that rely on sound signaling and reception for navigation, prey location, and intraspecific communication. The oyster toadfish Opsanus tau depends on acoustic communication for reproductive success, as males produce ‘boatwhistle’ calls to attract females to their nesting sites. However, it is unknown if in situ vessel sound impacts intraspecific communication in this species. Passive acoustic monitoring using a 4-hydrophone linear array was conducted in Eel Pond, a small harbor in Woods Hole, MA, USA, to monitor the calling behavior of male toadfish. The number of calls pre- and post-exposure to vessel sound was compared. Individual toadfish were localized, and their approximate sound level exposure was predicted using sound mapping. Following exposure to vessel sound, the number of calls significantly decreased compared to the number of calls pre-exposure, with vessel sound overlapping the frequency range of male toadfish boatwhistles. This study provides support that anthropogenic sound can negatively affect intraspecific communication and suggests that in situ vessel sound has the ability to mask boatwhistles and change the calling behavior of male toadfish. Masking could lead to a reduction in intraspecific communication and lower reproductive efficiency within the Eel Pond toadfish population.


Sign in / Sign up

Export Citation Format

Share Document