A Calcium-Dependent Mechanism Responsible for Increasing the Freezing Tolerance of the Bivalve Mollusc Modiolus Demissus

1977 ◽  
Vol 69 (1) ◽  
pp. 13-21
Author(s):  
DENNIS J. MURPHY

1. A time course of the changes in blood Ca2+ and freezing tolerance of Modiolus demissus (Dillwyn) demonstrated that increases in freezing tolerance parallel increases in blood Ca2+. The increases in freezing tolerance occurred rapidly, suggesting that Ca2+ affects freezing tolerance directly by its presence in the blood. 2. The presence of La3+ reduced the freezing tolerance of isolated foot muscle. Thus, Ca2+ appears to increase freezing tolerance directly by binding to cell membranes. 3. The loss of the contractile response of freeze-thawed foot muscle to Ach, KCl and caffeine and the continued response to CaCl2 suggested that cell membranes are the primary sites of freezing injury. 4. The increase in blood Ca2+ following low-temperature acclimation accounted for only 40% of the total change in freezing tolerance. Therefore, other mechanisms responsible for increasing the freezing tolerance of M. demissus following low temperature acclimation also exist.

1977 ◽  
Vol 69 (1) ◽  
pp. 1-12
Author(s):  
DENNIS J. MURPHY

1. A physiological mechanism responsible for increasing the freezing tolerance of the bivalve Modiolus demissus (Dillwyn) following low-temperature acclimation was demonstrated. 2. The rates of oxygen consumption of M. demissus acclimated to temperatures between 0 and 24 °C were presented as an Arrhenius plot. A change in slope occurred at 10 °C, suggesting that temperature alone was not responsible for the increased decline in the rate of oxygen consumption below 10 °C. 3. Low-temperature acclimation had no effect on blood Na+ or K+ concentrations but did reduce the concentration of blood Mg2+ and, in addition, resulted in the accumulation of end-products characteristic of anaerobic metabolism - tissue alanine and proline, and blood Ca2+. Furthermore, maintenance of M. demissus under anaerobic conditions increased freezing tolerance. 4. Taken together, these data indicate that the increased freezing tolerance of M. demissus acclimated to low temperatures involves a conversion to anaerobic metabolism. 5. The increase in blood Ca2+ following low-temperature acclimation was associated with the increased freezing tolerance. Finally, Mg2+ simulated the effect of Ca2+ on freezing tolerance, but was only 20% as effective. 6. These results suggest that a Ca2+-dependent mechanism responsible for increasing the freezing tolerance of M. demissus exists, and that the increase in blood Ca2+ is due to a conversion to anaerobic metabolism.


2013 ◽  
Vol 81 (4) ◽  
pp. 77-84 ◽  
Author(s):  
Paweł M. Pukacki ◽  
Emilia Kamińska-Rożek

Two-year-old seedlings of Norway spruce (<em>Picea abies</em>) during spring deacclimation were subjected to controlled reacclimation by exposure to low temperatures of 4/−3°C (day/night) in a cold room. The highest increase in freezing tolerance (by 7°C) was observed after 12 d of low temperature exposure, when shoot water potential (Ψ<sub>w shoot</sub>) decreased to 0.64 MPa. The process of reacclimation was accompanied by an increase in the phospholipid content of needle cell membranes. This increase applied to total (PL) and individual phospholipids: phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidic acid (PA). After being exposed to the low temperature for 18 d, the seedlings were moved into the open air. This caused deacclimation, with an increase in Ψ<sub>w shoot</sub> to −0.36 MPa and a decrease in the total phospholipid content and freezing tolerance of the needles. Significant correlations were observed between freezing tolerance, the membrane permeability (MP) of the needles and the phospholipid content, Ψ<sub>w shoot</sub> and water content of the needles. The results show that during spring deacclimation, Norway spruce seedlings can be subjected to reacclimation, which is reflected in the phospholipid content, the biophysical changes of the membranes, and the freezing tolerance of the seedlings. During both spring deacclimation and reacclimation, water content in the needles plays a critical role in the cold tolerance of spruce seedlings.


Author(s):  
Ioli Kotsogianni ◽  
Thomas M. Wood ◽  
Francesca M. Alexander ◽  
Stephen A. Cochrane ◽  
Nathaniel I. Martin

Cryobiology ◽  
2009 ◽  
Vol 59 (3) ◽  
pp. 408
Author(s):  
Satoshi Kaneko ◽  
Tomokazu Yamazaki ◽  
Matsuo Uemura ◽  
Yukio Kawamura

2016 ◽  
Vol 100 ◽  
pp. 157-168 ◽  
Author(s):  
Bin Liang ◽  
Deyong Kong ◽  
Jincai Ma ◽  
Chongqing Wen ◽  
Tong Yuan ◽  
...  

1989 ◽  
Vol 26 (6) ◽  
pp. 347-359 ◽  
Author(s):  
M. Bodelsson ◽  
B. Arneklo-Nobin ◽  
K. T&ouml;rnebrandt

1998 ◽  
Vol 152 (4-5) ◽  
pp. 473-479 ◽  
Author(s):  
Alexey I. Zabotin ◽  
Tatyana S. Barisheva ◽  
Olga A. Zabotina ◽  
Irina A. Larskaya ◽  
Vera V. Lozovaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document