On the geometry of rigid-body motions: The relation between Lie groups and screws

Author(s):  
S Stramigioli ◽  
B Maschke ◽  
C Bidard

This paper gives a synthetic presentation of the geometry of rigid-body motion in a projective geometrical framework. An important issue is the geometric approach to the identification of twists and wrenches in a Lie group approach and their relation to screws. The paper presents a novel formal way to describe the spaces of lines, axials, polars and screws as subsets or subspaces of Lie algebras in order to make clear the relation between screw concepts and Lie group concepts.


2001 ◽  
Vol 68 (6) ◽  
pp. 929-936 ◽  
Author(s):  
S. Stramigioli

This paper shows that in the use of Lie groups for the study of the relative motion of rigid bodies some assumptions are not explicitly stated. A commutation diagram is shown which points out the “reference problem” and its simplification to the usual Lie group approach under certain conditions which are made explicit.



2006 ◽  
Vol 129 (2) ◽  
pp. 166-172 ◽  
Author(s):  
Yi Zhang ◽  
Kwun-Lon Ting

This paper presents a study on the higher-order motion of point-lines embedded on rigid bodies. The mathematic treatment of the paper is based on dual quaternion algebra and differential geometry of line trajectories, which facilitate a concise and unified description of the material in this paper. Due to the unified treatment, the results are directly applicable to line motion as well. The transformation of a point-line between positions is expressed as a unit dual quaternion referred to as the point-line displacement operator depicting a pure translation along the point-line followed by a screw displacement about their common normal. The derivatives of the point-line displacement operator characterize the point-line motion to various orders with a set of characteristic numbers. A set of associated rigid body motions is obtained by applying an instantaneous rotation about the point-line. It shows that the ISA trihedrons of the associated rigid motions can be simply depicted with a set of ∞2 cylindroids. It also presents for a rigid body motion, the locus of lines and point-lines with common rotation or translation characteristics about the line axes. Lines embedded in a rigid body with uniform screw motion are presented. For a general rigid body motion, one may find lines generating up to the third order uniform screw motion about these lines.



Author(s):  
Gregory S. Chirikjian

Abstract Recently, the importance of metrics on the group of rigid body motions has been addressed in a number of works in the kinematics and robotics literature. This paper defines a new kind of metric on motion which is particularly easy to compute. It is shown how this metric is applicable to path generation for rigid body motions.



Author(s):  
Guangbo Hao ◽  
Xianwen Kong ◽  
Xiuyun He

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.



Author(s):  
T. D. Burton ◽  
C. P. Baker ◽  
J. Y. Lew

Abstract The maneuvering and motion control of large flexible structures are often performed hydraulically. The pressure dynamics of the hydraulic subsystem and the rigid body and vibrational dynamics of the structure are fully coupled. The hydraulic subsystem pressure dynamics are strongly nonlinear, with the servovalve opening x(t) providing a parametric excitation. The rigid body and/or flexible body motions may be nonlinear as well. In order to obtain accurate ODE models of the pressure dynamics, hydraulic fluid compressibility must generally be taken into account, and this results in system ODE models which can be very stiff (even if a low order Galerkin-vibration model is used). In addition, the dependence of the pressure derivatives on the square root of pressure results in a “faster than exponential” behavior as certain limiting pressure values are approached, and this may cause further problems in the numerics, including instability. The purpose of this paper is to present an efficient strategy for numerical simulation of the response of this type of system. The main results are the following: 1) If the system has no rigid body modes and is thus “self-centered,” that is, there exists an inherent stiffening effect which tends to push the motion to a stable static equilibrium, then linearized models of the pressure dynamics work well, even for relatively large pressure excursions. This result, enabling linear system theory to be used, appears of value for design and optimization work; 2) If the system possesses a rigid body mode and is thus “non-centered,” i.e., there is no stiffness element restraining rigid body motion, then typically linearization does not work. We have, however discovered an artifice which can be introduced into the ODE model to alleviate the stiffness/instability problems; 3) in some situations an incompressible model can be used effectively to simulate quasi-steady pressure fluctuations (with care!). In addition to the aforementioned simulation aspects, we will present comparisons of the theoretical behavior with experimental histories of pressures, rigid body motion, and vibrational motion measured for the Battelle dynamics/controls test bed system: a hydraulically actuated system consisting of a long flexible beam with end mass, mounted on a hub which is rotated hydraulically. The low order ODE models predict most aspects of behavior accurately.



1997 ◽  
Vol 53 (6) ◽  
pp. 953-960 ◽  
Author(s):  
F. Belaj

The asymmetric units of both ionic compounds [N-(chloroformimidoyl)phosphorimidic trichloridato]trichlorophosphorus hexachlorophosphate, [ClC(NPCl3)2]+PCl^{-}_{6} (1), and [N-(acetimidoyl)phosphorimidic trichloridato]trichlorophosphorus hexachloroantimonate, [CH3C(NPCl3)2]+SbCl^{-}_{6} (2), contain two formula units with the atoms located on general positions. All the cations show cis–trans conformations with respect to their X—C—N—P torsion angles [X = Cl for (1), C for (2)], but quite different conformations with respect to their C—N—P—Cl torsion angles. Therefore, the two NPCl3 groups of a cation are inequivalent, even though they are equivalent in solution. The very flexible C—N—P angles ranging from 120.6 (3) to 140.9 (3)° can be attributed to the intramolecular Cl...Cl and Cl...N contacts. A widening of the C—N—P angles correlates with a shortening of the P—N distances. The rigid-body motion analysis shows that the non-rigid intramolecular motions in the cations cannot be explained by allowance for intramolecular torsion of the three rigid subunits about specific bonds.



2015 ◽  
Vol 36 (3) ◽  
pp. 035021 ◽  
Author(s):  
Francois Leyvraz


Sign in / Sign up

Export Citation Format

Share Document