Radiation effect on natural convection boundary layer flow over a vertical wavy frustum of a cone
The effect of thermal radiation on a steady two-dimensional natural convection laminar boundary layer flow of a viscous incompressible optically thick fluid over a vertical wavy frustum of a cone has been investigated. The boundary layer regime when the Grashof number Gr is large is considered. Using appropriate transformations, the basic governing equations are transformed into a dimensionless form and then solved numerically employing two efficient methods, namely: (a) implicit finite difference method together with Keller-box scheme and (b) direct numerical scheme. Numerical results are presented by streamline, isotherms, velocity and temperature distribution of the fluid, as well as the local shearing stress in terms of the local skin-friction coefficient, the local heat transfer rate in terms of local Nusselt number, and the average rate of heat transfer for a wide range of the radiation—conduction parameter or Planck number Rd and the surface heating parameter θw.