Improvement on acoustic performance of the accumulator of double-cylinder rotary compressors

Author(s):  
Z Y Huang ◽  
W K Jiang ◽  
C H Liu ◽  
H S Jin ◽  
Y Zhou

Since the accumulator is one of main contributors to the overall noise level of the rotary compressor, research on the acoustic performance of accumulators is essential. Numerical analysis based on the computational fluid dynamic method shows that large pressure fluctuations are caused mainly by periodic rotating piston. The idea that the flow phase differences of two pipes could be utilized for suppressing fluctuations is proposed. The double standpipes of an accumulator are changed to the single pipe with two branches and each branch is connected to the inlet of the compressor. Flow structures and wall pressure fluctuations for the two configurations are computed. Computational results show that wall pressure pulsations of the new accumulator are obviously lower than that of the original. The acoustic experiments were carried out under the real working conditions. Compared with the original, the new accumulator shows that the overall noise level is reduced about 1.2 dB(A) and the sound spectrum levels are also lower in a wide frequency domain, which validate the numerical and theoretical analysis.

Author(s):  
Walter A. Kargus ◽  
Gerald C. Lauchle

The acoustic radiation from a turbulent boundary layer that occurs downstream of a rearward facing step discontinuity and reattaches to a flat plat is considred experimentally. The step is exposed ot a zero incidence, uniform subsonic flow. a quiet wall jet facility situated in an anechoic chamber is used for the studies. The “point” wall pressure spectra are measured by small, “pinhole” microphones located at various locations under the layer, including a point directly in the 90° corner of the step. The wall pressure fluctuations measured at the various locations are correlated with the signal detected by a far-field microphone. The measured cross-spectral densities are thus used to identify the relative contributions of the various flow regimes to the direct radiation. It is shown that the separation of the flow over the corner of the step is a dominant acoustic source, which is supported not only by the measured cross spectra, but also by the favorable comparison of the measured velocity power law to the theoretical value. Measurements made where the flow reattaches and at the turbulent boundary layer are less conclusive. This is because the pinhole tube attached to the microphone produced a sound due to a fluid-dynamic oscillation, which contaminated the measurement of the aeroacoustic sources.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
C. Sardu ◽  
D. Lasagna ◽  
G. Iuso

This paper proposes two different noise cancellation techniques for cleaning wall-pressure fluctuations signals. These fluctuations are measured around a circular cylinder with laminar and turbulent flow separation. The noise cancellation techniques are based on Wiener and adaptive filters and use the signals of pressure transducers mounted in a cross section of the cylinder and the signal of a free-field sensor opportunely located upstream. First, synthetic signals are used in order to validate the procedure. Then, both techniques are applied to the experimental data. Specific attention is paid to the filter order, optimized by a method introduced in this paper. Both filter types showed a selective behavior preserving the essence of the fluid dynamic phenomena characterizing the flow fields at each Reynolds number tested, especially when laminar separation occurs.


Author(s):  
M. P. Norton ◽  
A. Pruiti

Abstract This paper addresses the issue of quantifying the internal noise levels/wall pressure fluctuations in industrial gas pipelines. This quantification of internal noise levels/wall pressure fluctuations allows for external noise radiation from pipelines to be specified in absolute levels via appropriate noise prediction models. Semi-empirical prediction models based upon (i) estimated vibration levels and radiation ratios, (ii) semi-empirical transmission loss models, and (iii) statistical energy analysis models have already been reported on by Norton and Pruiti 1,3 and are not reported on here.


Author(s):  
André Baramili ◽  
Ludovic Chatellier ◽  
Laurent David ◽  
Loïc Ancian

The present study focuses on the analysis of the flow-induced vibration phenomenon typically encountered on piping systems containing an elbow. The correlation between the turbulent flow through the elbow and the dynamic forcing it yields on the piping walls was assessed experimentally. A closed water loop containing a transparent elbow was designed in order to develop fully turbulent duct flow condition. Particle Image Velocimetry (PIV) was applied in the transparent zone in order to provide unsteady data on the flow dynamics through the elbow; simultaneously, wall pressure fluctuations were measured on and around the elbow. Several flow configurations were tested in order to obtain a large coupled database linking the flow features to the resulting dynamic excitation on the walls. Finally, Partial Least Square Regression (PLSR) was applied in order to harvest the correlated information contained in multiple pressure signals at multiple time-delays and build a relationship capable of estimating the temporal evolution of the velocity field using a set of measured wall pressure signals.


Sign in / Sign up

Export Citation Format

Share Document