large pressure
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 68)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Da Ke ◽  
Wei Zhong ◽  
Sergey V Dmitriev ◽  
Daxing Xiong

Abstract We develop an effective numerical scheme to capture hydrodynamic modes in general classical anharmonic chains. This scheme is based on the hydrodynamic theory suggested by Ernst-Hauge-van Leeuwen, which takes full role of pressure fluctuations into account. With this scheme we show that the traditional pictures given by the current nonlinear fluctuating hydrodynamic theory are valid only when the system's pressure is zero and the pressure fluctuations are weak. For nonvanishing pressure, the hydrodynamic modes can, however, respond to small and large pressure fluctuations and relax in some distinct manners. Our results shed new light on understanding thermal transport from the perspective of hydrodynamic theory.


2021 ◽  
pp. 1-20
Author(s):  
Samuel H. Doyle ◽  
Bryn Hubbard ◽  
Poul Christoffersen ◽  
Robert Law ◽  
Duncan R. Hewitt ◽  
...  

Abstract Subglacial hydrology modulates basal motion but remains poorly constrained, particularly for soft-bedded Greenlandic outlet glaciers. Here, we report detailed measurements of the response of subglacial water pressure to the connection and drainage of adjacent water-filled boreholes drilled through kilometre-thick ice on Sermeq Kujalleq (Store Glacier). These measurements provide evidence for gap opening at the ice-sediment interface, Darcian flow through the sediment layer, and the forcing of water pressure in hydraulically-isolated cavities by stress transfer. We observed a small pressure drop followed by a large pressure rise in response to the connection of an adjacent borehole, consistent with the propagation of a flexural wave within the ice and underlying deformable sediment. We interpret the delayed pressure rise as evidence of no pre-existing conduit and the progressive decrease in hydraulic transmissivity as the closure of a narrow (< 1.5 mm) gap opened at the ice-sediment interface, and a reversion to Darcian flow through the sediment layer with a hydraulic conductivity of ≤ 10−6 m s−1. We suggest that gap opening at the ice-sediment interface deserves further attention as it will occur naturally in response to the rapid pressurisation of water at the bed.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012042
Author(s):  
Zheng Zhang ◽  
Jian Yu ◽  
Biaohua Cai ◽  
Longzhou Xiao ◽  
Yujing Zou

Abstract Due to long pipelines, complex hydraulic conditions, and high flow rate, Bidirectional Water Transfer System of ship is prone to producing Water Hammer Effect when the valve opens and closes, which has a great impact on the pipeline system. In this paper, Flowmaster software is used to simulate the Bidirectional Water Transfer System to study the system characteristics under different valve opening curves. The simulation results show that when the valve opens and closes, Bidirectional Water Transfer System will have a large pressure mutation. But the pressure changes of the stepped and the stepped curve opening curves are smaller and smoother than that of the linear opening curve. But the stepped and the stepped curve opening curves can’t eliminate the pressure and flow rate mutation when the valve opens and closes; In addition, the stepped and the stepped curve opening curves can effectively improve the phenomenon of water flowing out of the reservior, and effectively avoid the phenomenon of gas flowing into the reservior.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathan B. Speirs ◽  
Kenneth R. Langley ◽  
Zhao Pan ◽  
Tadd T. Truscott ◽  
Sigurdur T. Thoroddsen

AbstractWhen a solid object impacts on the surface of a liquid, extremely high pressure develops at the site of contact. Von Karman’s study of this classical physics problem showed that the pressure on the bottom surface of the impacting body approaches infinity for flat impacts. Yet, in contrast to the high pressures found from experience and in previous studies, we show that a flat-bottomed cylinder impacting a pool of liquid can decrease the local pressure sufficiently to cavitate the liquid. Cavitation occurs because the liquid is slightly compressible and impact creates large pressure waves that reflect from the free surface to form negative pressure regions. We find that an impact velocity as low as ~3 m/s suffices to cavitate the liquid and propose a new cavitation number to predict cavitation onset in low-speed solid-liquid impact-scenarios. These findings imply that localized cavitation could occur in impacts such as boat slamming, cliff jumping, and ocean landing of spacecraft.


2021 ◽  
Author(s):  
Robert S Wilcox ◽  
Larry R Baylor ◽  
Alessandro Bortolon ◽  
M Knölker ◽  
C J Lasnier ◽  
...  

Abstract Edge localized modes (ELMs) are triggered using deuterium pellets injected into plasmas with ITER-relevant low collisionality pedestals, and the resulting peak ELM energy fluence is reduced by approximately 25-50% relative to natural ELMs destabilized at similar pedestal pressures. Cryogenically frozen deuterium pellets are injected from the low-field side of the DIII-D tokamak at frequencies lower than the natural ELM frequency, and heat flux is measured by infrared cameras. Ideal MHD pedestal stability calculations show that without pellet injection, these low collisionality pedestals were limited by their current density (peeling-limited) rather than their pressure gradient (ballooning-limited). ELM triggering success correlates strongly with pellet mass, consistent with the theory that a large pressure perturbation is required to trigger an ELM in low collisionality discharges that are far from the ballooning stability boundary. For sufficiently large pellets, both instantaneous and time-integrated ELM energy deposition measured by infrared cameras is reduced with respect to naturally occurring ELMs at the inner strike point, which is the position where it is largest for natural ELMs. Energy fluence at the outer strike point is less effected. Cameras observing both heat flux and D-alpha emission often find significant toroidally asymmetric striations in the outboard far scrape-off layer resulting from ELMs that are triggered by pellets. Toroidal asymmetries at the inner strike point are similar between natural and pellet-triggered ELMs, suggesting that the reduction in peak heat flux and total fluence at that location is robust for the conditions reported here.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Xinhui Liu ◽  
Jinshi Chen ◽  
Dongyang Huo

AbstractLoad-sensing steering systems for articulated loaders are prone to large pressure shocks and oscillations during steering operations, affecting the system stability. An optimized structure of the redirector with bypass damping is proposed to improve this phenomenon. In this structure, orifices and throttle grooves are added to the traditional redirector. To control the steering load and working conditions, the steering load of the loader is replaced by a pressure regulating valve. Simulation and experimental results reveal that the redirector with bypass damping has better load-sensing characteristics than the traditional redirector. The peak output pressure shock caused by the load unit step signal decreases from 6.50 to 5.64 MPa, which means the pressure oscillation of the hydraulic system is reduced by 13.4%. The pressure fluctuation time can be reduced from 2.09 to 1.6 s, with a decrease rate of 23.4%. The output pressure oscillation decays swiftly, and the smoothness of the steering operation is improved significantly.


2021 ◽  
Vol 17 (3) ◽  
pp. 218-221
Author(s):  
Minseo Kim ◽  
Sungmi Jeon ◽  
Sang Wha Kim

Pressure sores are common but troublesome for both patients and clinicians. They can range from mild to severe and must be managed accordingly. Despite advancements in both non-surgical and surgical intervention, no standard treatment protocol has yet been established. Since pressure sores can occur in a variety of clinical settings, treatment must be individualized to the patient’s circumstances. Recently, acellular dermal matrix (ADM) has been utilized as an alternative treatment for non-healing wounds. In the present report, we describe the case of a non-ambulatory patient in whom a large pressure sore located near the anus was completely cured using CG paste, an injectable ADM.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2534
Author(s):  
Jelle Vekeman ◽  
Daniel Bahamon ◽  
Inmaculada García Cuesta ◽  
Noelia Faginas-Lago ◽  
José Sánchez-Marín ◽  
...  

The adsorption—for separation, storage and transportation—of methane, hydrogen and their mixture is important for a sustainable energy consumption in present-day society. Graphene derivatives have proven to be very promising for such an application, yet for a good design a better understanding of the optimal pore size is needed. In this work, grand canonical Monte Carlo simulations, employing Improved Lennard–Jones potentials, are performed to determine the ideal interlayer distance for a slit-shaped graphene pore in a large pressure range. A detailed study of the adsorption behavior of methane, hydrogen and their equimolar mixture in different sizes of graphene pores is obtained through calculation of absolute and excess adsorption isotherms, isosteric heats and the selectivity. Moreover, a molecular picture is provided through z-density profiles at low and high pressure. It is found that an interlayer distance of about twice the van der Waals distance of the adsorbate is recommended to enhance the adsorbing ability. Furthermore, the graphene structures with slit-shaped pores were found to be very capable of adsorbing methane and separating methane from hydrogen in a mixture at reasonable working conditions (300 K and well below 15 atm).


Sign in / Sign up

Export Citation Format

Share Document