Condensation heat transfer and pressure drop of R134a inside microfin tubes: Effect of fin height and fin angle

Author(s):  
R K Al-Dadah ◽  
A D Naser

In this paper, the effects of fin height and fin angle on condensation heat transfer inside microfin tubes were investigated. One smooth and six microfin tubes with outer diameters of 9.52 mm were used to condense R134a at 30 °C and a mass flux range 157–347 kg/m2s. Each of the microfin tubes tested had 60 fins and a spiral angle of 18°. In three of these tubes only the fin height was altered to 0.15, 0.20, or 0.25 mm while the fin angle remained at 30°. The remaining microfin tubes had altered fin angles to 40, 50, or 60°, with the fin heights remaining at 0.20 mm. Experimental results showed that microfin tubes had distinct performance advantages over the smooth tube. Particularly, the microfin tube with fin height of 0.20 mm and fin angle of 50° produced condensation heat transfer coefficients 215–250 per cent higher than those of the smooth tube, with average increases in pressure drops at 115–160 per cent. Four frequently cited correlations were used to predict the heat transfer coefficient for condensation inside smooth tubes. Of these correlations, the predictive method proposed by Cavallini et al. [1] that takes into account the wide range of flow patterns encountered in condensation at various mass fluxes was found to best predict the experimental results. For microfin tubes, the model by Yu and Koyama [2] predicted the experimental results with least deviation from experimental results compared to that of Cavallini et al. [3, 4] and that of Kedzierski and Goncalves [5].

Author(s):  
Jian-jun Sun ◽  
Jing-xiang Chen ◽  
David J. Kukulka ◽  
Kan Zhou ◽  
Wei Li ◽  
...  

An experiment investigation was performed using R410A in order to determine the single-phase and evaporation heat transfer coefficients on the outside of (i) a smooth tube; (ii) herringbone tube; and (iii) the newly developed Vipertex enhanced surface 1EHT tube; all with the same external diameter (12.7 mm). The nominal evaporation temperature is 279 K, with inlet and outlet qualities of 0.1 and 0.8. Mass fluxes ranged from 10 to 40 kg m−2s−1. Results suggest that the 1EHT tube has excellent heat transfer performance but a higher pressure drop when compared to a smooth tube. Evaporation heat transfer coefficient for the 1EHT is lower than the herringbone tube and the pressure drop is almost the same.


2002 ◽  
Vol 124 (5) ◽  
pp. 912-921 ◽  
Author(s):  
F. J. Smit ◽  
J. P. Meyer

Using mixtures of the zeotropic refrigerant mixture R-22/R-142b, a series of experiments was performed to determine the sectional and average heat transfer coefficients. Experiments were also conducted to compare three different heat transfer enhancement methods to that of smooth tubes. They were microfins, twisted tapes, and high fins. Measurements at different mass fluxes were obtained at six refrigerant mass fractions from 100 percent R-22 up to a 50 percent/50 percent mixture of R-22/R-142b. All condensation measurements were conducted at an isobaric inlet pressure of 2.43 MPa. This pressure corresponds to a saturation temperature of 60°C for R-22. The measurements were taken in 9.53 mm outer diameter smooth tubes and microfin tubes with lengths of 1603 mm. The heat transfer coefficients were determined with the Log Mean Temperature Difference equations. It was found that microfins were more suitable as an enhancement method than twisted tubes or high fins. Also, that the heat transfer coefficients and pressure drops decrease as the mass fraction of R-142b increases.


2017 ◽  
Vol 25 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Pham-Quang Vu ◽  
Kwang-Il Choi ◽  
Jong-Taek Oh ◽  
Honggi Cho

The condensation heat transfer coefficients and pressure drops of R410A and R22 flowing inside a horizontal aluminum multiport mini-channel tube having 18 channels are investigated. Experimental data are presented for the range of vapor quality from 0.1 to 0.9, mass flux from 50 to 500[Formula: see text]kg/m2s, heat flux from 3 to 15[Formula: see text]kW/m2 and the saturation temperature at 48[Formula: see text]C. The pressure drop across the test section was directly measured by a differential pressure transducer. At a small scale, the noncircular cross-sections can enhance the effect of the surface tension. The average heat transfer coefficient increased with the increase of vapor quality, mass flux and heat flux. Under the same test conditions, the heat transfer coefficients of R22 are higher than those for R410A, the pressure drops for R410A are 7–19% lower than those of R22. The lower pressure drop of R410A has an important advantage as an alternative working fluid for R22 in air-conditioning and heat pump systems.


Author(s):  
Niro Nagai ◽  
Masanori Takeuchi ◽  
Osamu Kura ◽  
Tomoharu Masuda

Characteristics of free-convection condensation heat transfer from moist air under atmospheric pressure were experimentally investigated, for further improvement of physical modeling on heat and mass transfer of solar distillation device. The cooled metal surface was 50mm width × 100mm height. The experimental conditions were as follows. Moist air temperature range was 40∼100°C for saturated moist air, and 50∼70°C for non-saturated moist air. Relative humidity range was 50∼90%. Inclination angle of cooled surface was 0° (downward facing) ∼ 180° (upward facing). All experimental results of heat transfer characteristics for vertical surface (angle 90°) were well correlated into a single equation with partial air pressure ratio using classical Nusselt’s liquid-film theory. The experimental results for the effects of inclination angle show that heat transfer coefficients for angle 0°∼105° were almost constant with slight peak value at angle 45°, followed by rapid decreasing of heat transfer coefficient over angle 120°.


Author(s):  
Reem Merchant ◽  
Sunil Mehendale

The objective of the current work is to present a new correlation for predicting heat transfer coefficients (HTCs) for flow boiling in horizontal microfin tubes. Correlations to predict HTCs have been proposed by numerous authors such as Yu et al., Thome et al., Cavallini et al., Yun et al., Chamra and Mago, Wu et al., and other researchers. The correlations proposed are semi-empirical due to the difficulties associated with modeling the physics of flow boiling in microfin tubes. The above correlations are based on smooth tube flow boiling correlations which are modified to capture the effect of the inner grooves in the microfin tubes on the boiling process. In a previous work, it has been demonstrated that no single correlation can reasonably predict the flow boiling HTCs over a wide range of operating conditions and tube geometric parameters (Merchant and Mehendale). A new model has been proposed and validated using an experimental database of 1576 points from published literature. For the full dataset, the new correlation has X30% of 67.3%, compared to Cavallini et al. and Wu et al. with X30% of 44.2% and 40.6% respectively. The performance of the new model for tube diameters less than and greater than 5 mm has also been discussed for halogenated refrigerants and CO2.


Sign in / Sign up

Export Citation Format

Share Document