The Dynamic Behaviour of Chiral, Fixed-Free, Single-Walled Carbon Nanotube-Based Nanomechanical Mass Sensors Due to Atomic Vacancies

Author(s):  
A Y Joshi ◽  
S P Harsha ◽  
S C Sharma
NANO ◽  
2012 ◽  
Vol 07 (02) ◽  
pp. 1250008 ◽  
Author(s):  
ANAND Y. JOSHI ◽  
SATISH C. SHARMA ◽  
S. P. HARSHA

Nonlinear vibrational behavior of a single-walled carbon nanotube based mass sensors is considered. The modeling involves stretching of the mid plane and damping. The equation of motion involves two nonlinear terms due to the curved geometry and the stretching of the central plane due to the bridged boundary conditions. The manifestation of instability and chaos in the dynamic response is observed. The regions of periodic, sub-harmonic and chaotic behavior are clearly seen to be dependent on added mass and the surface deviations. Poincaré maps and frequency spectra are used to explicate and demonstrate the miscellany of the system behavior.


Author(s):  
Haw-Long Lee ◽  
Win-Jin Chang

In this paper, the dynamic behaviour of a single-walled carbon nanotube (SWCNT) for nanoparticle delivery is studied using non-local elasticity theory. The response of the delivery system depends on the time history and velocity of the moving nanoparticle. In addition, the interaction between the SWCNT and the moving nanoparticle, and the foundation of the SWCNT can also influence the dynamic behaviour of the system. The effects of foundation stiffness, confined stiffness, velocity ratio, non-local parameter and travel time on the behaviour are analysed using the Runge–Kutta method. The numerical solution is in agreement with the analytical result for the special case. The numerical analysis shows that increasing the non-local parameter, confined stiffness and foundation stiffness decreases the dynamic displacement of SWCNT. However, increasing the velocity ratio increases the maximum displacement.


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045306
Author(s):  
Georg Daniel Förster ◽  
Thomas D. Swinburne ◽  
Hua Jiang ◽  
Esko Kauppinen ◽  
Christophe Bichara

2021 ◽  
Vol 129 (1) ◽  
pp. 014309
Author(s):  
Kasidet Jing Trerayapiwat ◽  
Sven Lohmann ◽  
Xuedan Ma ◽  
Sahar Sharifzadeh

Sign in / Sign up

Export Citation Format

Share Document