The Measurement of Dynamic Cutting Force Data and its Application to the Prediction of Chatter

1982 ◽  
Vol 24 (3) ◽  
pp. 139-145
Author(s):  
M. Burdekin ◽  
S. E. Kilic

A method and the related equipment to obtain dynamic cutting force coefficients under simulated regenerative chatter conditions are described. The coefficients in both thrust (normal to the cut surface) and the main cutting (tangential) directions for orthogonal cutting are presented for various cutting conditions. An algorithm which is developed to predict chatter instability by combining the receptance of a machine tool with the dynamic cutting data is also presented. Comparison of experimentally-determined stability charts of a centre lathe with the predicted ones is made to evaluate the reliability of the method.

Author(s):  
Han Ul Lee ◽  
Dong-Woo Cho ◽  
Kornel F. Ehmann

Complex three-dimensional miniature components are needed in a wide range of industrial applications from aerospace to biomedicine. Such products can be effectively produced by micro-end-milling processes that are capable of accurately producing high aspect ratio features and parts. This paper presents a mechanistic cutting force model for the precise prediction of the cutting forces in micro-end-milling under various cutting conditions. In order to account for the actual physical phenomena at the edge of the tool, the components of the cutting force vector are determined based on the newly introduced concept of the partial effective rake angle. The proposed model also uses instantaneous cutting force coefficients that are independent of the end-milling cutting conditions. These cutting force coefficients, determined from measured cutting forces, reflect the influence of the majority of cutting mechanisms involved in micro-end-milling including the minimum chip-thickness effect. The comparison of the predicted and measured cutting forces has shown that the proposed method provides very accurate results.


2015 ◽  
Vol 2 (4) ◽  
pp. 233-247 ◽  
Author(s):  
Yung-Chou Kao ◽  
Nhu-Tung Nguyen ◽  
Mau-Sheng Chen ◽  
Shyh-Chour Huang

Abstract In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results. Highlights By investigation of the stable cutting conditions in milling process, the linear function of average cutting force and feed per flute was successfully verified. A combined theoretical-experimental method was proposed with an effective model for the determination of cutting force coefficients in ball-end mill process.


Mechanik ◽  
2015 ◽  
pp. 190/16-190/22
Author(s):  
Krzysztof Jemielniak ◽  
Mirosław Nejman ◽  
Dominika Śniegulska-Grądzka

2005 ◽  
Vol 93 (9-12) ◽  
pp. 369-373 ◽  
Author(s):  
B. Benmohammed ◽  
F. Lapujoulade ◽  
A. Moisan ◽  
H. Mazouz ◽  
M. Assas

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 456
Author(s):  
Jonggeun Kim ◽  
Hansoo Lee ◽  
Jeong Woo Jeon ◽  
Jong Moon Kim ◽  
Hyeon Uk Lee ◽  
...  

Machining processes are critical and widely used components in the manufacturing industry because they help to precisely make products and reduce production time. To keep the previous advantages, a machine tool should be installed at the designated place and condition of the machine tool should be maintained appropriately to working environment. In various maintenance methods for keeping the condition of machine tool, condition-based maintenance can be robust to unpredicted accidents and reduce maintenance costs. Tool monitoring and diagnosis are some of the most important components of the condition based maintenance. This paper proposes stacked auto-encoder based CNC machine tool diagnosis using discrete wavelet transform feature extraction to diagnose a machine tool. The diagnosis model, which only uses cutting force data, cannot sufficiently reflects tool condition. Hence, we modeled diagnosis model using features extracted from a cutting force, a current signal, and coefficients of the discrete wavelet transform. The experimental results showed that the model which uses feature data has better performance than the model that uses only cutting force data. The feature based models are lower false negative rate (FNR) and false positive rate. Moreover, squared prediction error using normalized residual vector also reduced FNR because normalization reduces weight bias.


2005 ◽  
Vol 127 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Hoon Ko ◽  
Dong-Woo Cho

Application of a ball-end milling process model to a CAD/CAM or CAPP system requires a generalized methodology to determine the cutting force coefficients for different cutting conditions. In this paper, we propose a mechanistic cutting force model for 3D ball-end milling using instantaneous cutting force coefficients that are independent of the cutting conditions. The uncut chip thickness model for three-dimensional machining considers cutter deflection and runout. An in-depth analysis of the characteristics of these cutting force coefficients, which can be determined from only a few test cuts, is provided. For more accurate cutting force predictions, the size effect is also modeled using the cutter edge length of the ball-end mill and is incorporated into the cutting force model. This method of estimating the 3D ball-end milling force coefficients has been tested experimentally for various cutting conditions.


2021 ◽  
Author(s):  
Vipul Shah

Vibration can cause problems when it occurs during machining, especially if it cannot be damped and continuous to increase, a phenomenon known as chatter. This thesis project focuses on reviewing the state-of-the-arts work in chatter research, identifying a reliable mechanistic dynamic cutting force model for orthogonal cutting operations when machining slender shafts, carrying out a series of experiments on uniform and stepped workpiece[s], and validating the theoretical predictions of chatter onset conditions against experimental results.


1978 ◽  
Vol 100 (2) ◽  
pp. 229-235 ◽  
Author(s):  
E. Usui ◽  
A. Hirota

The cutting model and the energy method to predict chip formation and cutting force, which were proposed in the previous part of this study, are extended to machining with conventional single-point tool. The prediction is always possible in the practical range of cutting conditions regardless of size of cutting and tool geometry, if only orthogonal cutting data under equivalent cutting conditions are in hand. The predicted results are verified to be in good agreement with the experimental results in a wide variety of depth of cut, side and back rake angles, side cutting edge angle, and nose radius.


Sign in / Sign up

Export Citation Format

Share Document