A Study on Prediction of Welding Current in Gas Metal arc Welding Part 2: Experimental Modelling of Relationship Between Welding Current and Tip-to-Workpiece Distance and its Application to Weld Seam Tracking System

Author(s):  
J W Kim ◽  
S J Na
2007 ◽  
Vol 1 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Jinqiang Gao ◽  
Chuansong Wu ◽  
Xizhang Liu ◽  
Dianxiu Xia

Author(s):  
C D Yoo ◽  
H-K Sunwoo ◽  
K-I Koh

The arc sensor has been widely used to detect the weld seam by monitoring welding current or voltage variation during weaving in gas metal arc welding (GMAW). In this work, the arc light intensity and welding resistance are utilized as the seam tracking sensor. Signal characteristics of the arc light intensity and welding resistance are compared when argon and CO2 gas are used for shielding. The performance of signal processing methods such as the least squares and integration methods is evaluated experimentally. It is found that the arc light intensity provides higher quality signals than welding resistance with CO2 gas. While both signal processing methods demonstrate almost equal seam tracking capabilities, the integration method appears to be more efficient because of the short computation time.


1998 ◽  
Vol 120 (3) ◽  
pp. 600-608 ◽  
Author(s):  
S. B. Zhang ◽  
Y. M. Zhang ◽  
R. Kovacevic

A novel seam tracking technology based on high frequency ultrasound is developed in order to achieve high accuracy in weld seam identification. The transmission efficiency of the ultrasound is critical for obtaining a sufficient echo amplitude. Since the transmission efficiency is determined by the difference in impedance between the piezoelectric ceramic and air, match layers are designed to optimize the transmission efficiency by matching impedance. Since the air impedance depends on the density and velocity of the ultrasound, which both depend on the temperature, the optimization has been done for a wide bandwidth. Also, the receiving circuit is designed so that its resonance frequency matches the frequency of the ultrasound. As a result, the sensitivity of the noncontact ultrasonic sensor is improved 80-fold. By properly designing the focal length of the transducer, a high resolution ultrasound beam, 0.5 mm in diameter, is achieved. Based on the proposed sensing technology, a noncontact seam tracking system has been developed. Applications of the developed system in gas tungsten arc welding (GTAW) and CO2 gas metal arc welding (GMAW) processes show that a tracking accuracy of 0.5 mm is guaranteed despite the arc light, spatter, high temperature, joint configuration, small gap, etc.


Author(s):  
C D Yoo ◽  
Y S Yoo ◽  
H-K Sunwoo

The arc length has been detected through the arc because the welding current and voltage vary linearly with the arc length. In this work, the relationship between the arc light intensity and arc length is investigated through analytic modelling. The arc light intensity is derived as a function of the arc length and welding current using the heat balance in the plasma. Experiments are carried out to verify the proposed model and to find out the effects of welding conditions on the arc light intensity in gas metal arc welding (GMAW). The arc light intensity varies proportionally to the arc length and signal quality is enhanced with a fast weaving speed. The predicted results of the arc light intensity show reasonably good agreement with the experimental data.


2004 ◽  
Vol 127 (3) ◽  
pp. 590-597 ◽  
Author(s):  
Guo Xu ◽  
William W. Schultz ◽  
Elijah Kannatey-Asibu

A numerical model is developed to simulate the short-circuiting metal transfer process during gas metal arc welding (GMAW). The energy equation and the Marangoni convection are considered for the first time in analyzing the short-circuiting time. A front-tracking free surface method explicity tracks the profile of the liquid bridge. The electromagnetic field, distribution of velocity, pressure, and temperature are calculated using the developed model. Effects of welding current, surface tension temperature coefficient, and initial drop volume on short-circuiting duration time are examined. The results show that both the electromagnetic force and Marangoni shear stress play significant roles in short-circuiting transfer welding.


Sign in / Sign up

Export Citation Format

Share Document