Load Sharing in Metallic and Non-Metallic Gears

Author(s):  
D Walton ◽  
A A Tessema ◽  
C J Hooke ◽  
J M Shippen

A review of work on tooth deformation and load sharing in non-metallic gears is presented. A finite element analysis employing the flexibility method for contacting bodies is used to model tooth deflections and contact patterns between meshing gears For metallic gears the change in contact ratio between the theoretical and running values is shown to be small. However, for low modulus, non-metallic gears the change in contact ratio is large and can give cause for concern. The benefits and disadvantages of this increase in operating contact ratio is stated. Finally, the possibility of characterizing the change in operating contact ratio in a non-dimensional form is discussed.

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2014 ◽  
Vol 29 (7) ◽  
pp. 1491-1498 ◽  
Author(s):  
Bernardo Innocenti ◽  
Ömer Faruk Bilgen ◽  
Luc Labey ◽  
G. Harry van Lenthe ◽  
Jos Vander Sloten ◽  
...  

2019 ◽  
Vol 54 (7) ◽  
pp. 961-980 ◽  
Author(s):  
Serkan Kangal ◽  
Osman Kartav ◽  
Metin Tanoğlu ◽  
Engin Aktaş ◽  
H Seçil Artem

In this study, multi-layered composite overwrapped pressure vessels for high-pressure gaseous storage were designed, modeled by finite element method and manufactured by filament winding technique. 34CrMo4 steel was selected as a load-sharing metallic liner. Glass and carbon filaments were overwrapped on the liner with a winding angle of [±11°/90°2]3 to obtain fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The vessels were loaded with increasing internal pressure up to the burst pressure level. The mechanical performances of pressure vessels, (i) fully overwrapped with glass fibers and (ii) with additional two carbon hoop layers on the cylindrical section, were investigated by both experimental and numerical approaches. In numerical approaches, finite element analysis was performed featuring a simple progressive damage model available in ANSYS software package for the composite section. The metal liner was modeled as elastic–plastic material. The results reveal that the finite element model provides a good correlation between experimental and numerical strain results for the vessels, together with the indication of the positive effect on radial deformation of the COPVs due to the composite interlayer hybridization. The constructed model was also able to predict experimental burst pressures within a range of 8%. However, the experimental and finite element analysis results showed that hybridization of hoop layers did not have any significant impact on the burst pressure performance of the vessels. This finding was attributed to the change of load-sharing capacity of composite layers due to the stiffness difference of carbon and glass fibers.


2017 ◽  
Vol 11 (2) ◽  
Author(s):  
Jiang Xu ◽  
Jie Yang ◽  
Salman Sohrabi ◽  
Yihua Zhou ◽  
Yaling Liu

Overlapping stents are widely used in vascular stent surgeries. However, the rate of stent fractures (SF) and in-stent restenosis (ISR) after using overlapping stents is higher than that of single stent implantations. Published studies investigating the nature of overlapping stents rely primarily on medical images, which can only reveal the effect of the surgery without providing insights into how stent overlap influences the implantation process. In this paper, a finite element analysis of the overlapping stent implantation process was performed to study the interaction between overlapping stents. Four different cases, based on three typical stent overlap modes and two classical balloons, were investigated. The results showed that overlapping contact patterns among struts were edge-to-edge, edge-to-surface, and noncontact. These were mainly induced by the nonuniform deformation of the stent in the radial direction and stent tubular structures. Meanwhile, the results also revealed that the contact pressure was concentrated in the edge of overlapping struts. During the stent overlap process, the contact pattern was primarily edge-to-edge contact at the beginning and edge-to-surface contact as the contact pressure increased. The interactions between overlapping stents suggest that the failure of overlapping stents frequently occurs along stent edges, which agrees with the previous experimental research regarding the safety of overlapping stents. This paper also provides a fundamental understanding of the mechanical properties of overlapping stents.


Author(s):  
Benny Thomas ◽  
K Sankaranarayanasamy ◽  
S Ramachandra ◽  
SP Suresh Kumar

Various analytical methods have been developed by designers to predict gear tooth bending stress in asymmetric spur gears with an intention to improve the accuracy of predicted results and to reduce the need for time consuming finite element analysis at the early stages of gear design. Asymmetry in the drive and coast side of asymmetric spur gears poses difficulty in direct application of well-known procedures like American Gear Manufacturers Association and International Organization for Standardization in the prediction of gear tooth bending stress. In earlier works, ISO-6336-3 methodology was suitably modified and adapted to predict asymmetric spur gear tooth bending stress. This approach is based on certain assumptions on the location of critical section which could introduce error in the predicted maximum bending stress. The present work is to analytically predict gear tooth bending stress in normal contact ratio asymmetric spur gears based on a more rigorous analytical approach. This includes a fundamental study on the gear tooth orientation used to define the coordinate system, determination of maximum bending stress by search along the fillet profile and to obtain stress profile along the fillet. Gear tooth bending stress obtained from the present work using Search method is compared against the results obtained from earlier adapted International Organization for Standardization method and Finite Element Analysis. This study recommends a new coordinate system and method for analytical prediction of gear tooth bending stress in normal contact ratio asymmetric spur gears.


Author(s):  
Roger Chang ◽  
Ed Fisher

Marine drilling riser using a load sharing flange design as the coupling connector is getting popular as people venture into the ultra deep water, 10,000 ft and more. The advantage and goal is the reduction in riser pipe wall thickness; hence, the riser system weight saving. The float (gap) value between the auxiliary lines’ coupling and the flange cut-out pocket is diligently designed in the engineering phase and carefully maintained in the manufacturing phase so that auxiliary lines start sharing the load at the desired tension magnitude. Two slopes of riser pipe tension curve, riser pipe carrying the full load then sharing with auxiliary lines, is well accepted and used in the design. However, it is found by finite element analysis that the riser pipe tension has a third slope when the auxiliary lines are pressurized. This paper presents the works done in deriving this finding and the associated fatigue problem needs to be considered in the load sharing flange design.


Sign in / Sign up

Export Citation Format

Share Document