scholarly journals Effect of simultaneous administration of drugs on absorption and excretion. XVII. In vivo protein binding interaction between sulfamethoxazole and chloral hydrate in rabbits.

1984 ◽  
Vol 32 (5) ◽  
pp. 1967-1972
Author(s):  
YORISHIGE IMAMURA ◽  
ELIORAMON LOO ◽  
HISASHI ICHIBAGASE
1984 ◽  
Vol 9 (4) ◽  
pp. 359-363 ◽  
Author(s):  
Roberto Grimaldi ◽  
Sergio Lecchini ◽  
Francesca Crema ◽  
Emilio Perucca

2019 ◽  
Vol 16 (6) ◽  
pp. 696-710
Author(s):  
Mahmoud Balbaa ◽  
Doaa Awad ◽  
Ahmad Abd Elaal ◽  
Shimaa Mahsoub ◽  
Mayssaa Moharram ◽  
...  

Background: ,2,3-Triazoles and imidazoles are important five-membered heterocyclic scaffolds due to their extensive biological activities. These products have been an area of growing interest to many researchers around the world because of their enormous pharmaceutical scope. Methods: The in vivo and in vitro enzyme inhibition of some thioglycosides encompassing 1,2,4- triazole N1, N2, and N3 and/or imidazole moieties N4, N5, and N6. The effect on the antioxidant enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) was investigated as well as their effect on α-glucosidase and β-glucuronidase. Molecular docking studies were carried out to investigate the mode of the binding interaction of the compounds with α- glucosidase and β -glucuronidase. In addition, quantitative structure-activity relationship (QSAR) investigation was applied to find out the correlation between toxicity and physicochemical properties. Results: The decrease of the antioxidant status was revealed by the in vivo effect of the tested compounds. Furthermore, the in vivo and in vitro inhibitory effects of the tested compounds were clearly pronounced on α-glucosidase, but not β-glucuronidase. The IC50 and Ki values revealed that the thioglycoside - based 1,2,4-triazole N3 possesses a high inhibitory action. In addition, the in vitro studies demonstrated that the whole tested 1,2,4-triazole are potent inhibitors with a Ki magnitude of 10-6 and exhibited a competitive type inhibition. On the other hand, the thioglycosides - based imidazole ring showed an antioxidant activity and exerted a slight in vivo stimulation of α-glucosidase and β- glucuronidase. Molecular docking proved that the compounds exhibited binding affinity with the active sites of α -glucosidase and β-glucuronidase (docking score ranged from -2.320 to -4.370 kcal/mol). Furthermore, QSAR study revealed that the HBD and RB were found to have an overall significant correlation with the toxicity. Conclusion: These data suggest that the inhibition of α-glucosidase is accompanied by an oxidative stress action.


2020 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Melpomeni Fani ◽  
Viktoria Weingaertner ◽  
Petra Kolenc Peitl ◽  
Rosalba Mansi ◽  
Raghuvir H. Gaonkar ◽  
...  

Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project “TECANT” two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist.


1968 ◽  
Vol 108 (3) ◽  
pp. 499-503 ◽  
Author(s):  
E Caspi ◽  
J. A. F. Wickramasinghe ◽  
D. O. Lewis

The role of deoxycorticosterone in the biosynthesis of digitoxigenin was investigated by the simultaneous administration of deoxy[1,2−3H2]corticosterone and [4−14C]progesterone to a Digitalis lanata plant. The biosynthetically formed [3H,14C]digitoxigenin and deoxy[3H,14C]corticosterone were isolated and the distribution of the two isotopes in these products was determined. The transformation of progesterone into deoxycorticosterone in vivo was established. The biosynthetic route from progesterone via deoxycorticosterone to cardenolides was found to be of little significance.


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2021 ◽  
Vol 16 (12) ◽  
pp. 119-124
Author(s):  
S. Syed Chandini ◽  
Sairam Mantri

Thrombomodulin (TM) and matrix metalloproteinase (MMPs) are the major factors that are responsible for lung cancer. Hence, the identification of novel compounds inhibiting TM and MMPs is the challenging task for the scientists. Even though synthetic drugs were developed, their toxicity and offtarget limit their usage. The current study aims to investigate the molecular simulations for bacterial derived stearic acid to estimate the in silico anticancer activity against TM and MMPs protein as target compounds and the findings were correlated with the standard drug vorinostat. Using Lamarckian genetic algorithm, the TM and MMPs were energy minimized and docked with stearic acid and vorinostat using auto dock 4.2 and visualized in PyMol software. Protein and ligand binding analysis revealed that stearic acid interacts with the amino acids of MMPs residues of PHE83, SER212, ALA213 and ASN214. It interacts with the TMs with two amino acid residues i.e. CYS407 and GLU408. Hence, compared to vorinostat, stearic acid shows a higher binding affinity towards MMPs and slightly lower affinity towards TM proteinase. We conclude that the computational analysis of ligand binding interaction of stearic acid suggests that it could be a potential inhibitor of matrix metallo proteinase and is effective against thrombomodulin and can be considered as an anticancer agent by in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document