Are Vascular Conductance and Muscle Blood Flow During Exercise Affected by Hypoxia and Arterial Perfusion Pressure?

2017 ◽  
Vol 49 (5S) ◽  
pp. 826
Author(s):  
Rodrigo Villar ◽  
Richard L. Hughson
2007 ◽  
Vol 293 (5) ◽  
pp. H2928-H2936 ◽  
Author(s):  
Kathryn L. Walker ◽  
Natasha R. Saunders ◽  
Dennis Jensen ◽  
Jennifer L. Kuk ◽  
Suzi-Lai Wong ◽  
...  

We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden ∼30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBFrelax). In an AH-to-BH transition, FBFrelax increased immediately, in excess of the increase in FAPP (∼69% vs. ∼41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVCrelax) increased by ∼19%]. FVCrelax was restored by the second relaxation. Continued slow decreases in FVCrelax stabilized by 2 min without restoring FBFrelax. In a BH-to-AH transition, FBFrelax decreased immediately, in excess of the decrease in FAPP (∼37% vs. ∼29%). FVCrelax decreased by ∼14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVCrelax was similar to that in the AH-to-BH transition, and FBFrelax was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.


2013 ◽  
Vol 114 (5) ◽  
pp. 620-627 ◽  
Author(s):  
Rodrigo Villar ◽  
Richard L. Hughson

Changes in vascular conductance (VC) are required to counter changes in muscle perfusion pressure (MPP) to maintain muscle blood flow (MBF) during exercise. We investigated the recruitment of VC as a function of peak VC measured in three body positions at two different work rates to test the hypothesis that adaptations in VC compensated changes in MPP at low-power output (LPO), but not at high-power output (HPO). Eleven healthy volunteers exercised at LPO and HPO (repeated plantar flexion contractions at 20–30% maximal voluntary contraction, respectively) in horizontal (HOR), 35° head-down tilt (HDT), and 45° head-up tilt (HUT). Muscle blood flow velocity and popliteal diameter were measured by ultrasound to determine MBF, and VC was estimated by dividing MBF flow by MPP. Peak VC was unaffected by body position. The rates of increase in MBF and VC were significantly faster in HUT and slower in HDT than HOR, and rates were faster in LPO than HPO. During LPO exercise, the increase in, and steady-state values of, MBF were less for HUT and HDT than HOR; the increase in VC was less in HUT than HOR and HDT. During HPO exercise, MBF in the HDT was reduced compared with HOR and HUT, even though VC reached 92% VC peak, which was greater than HOR, which was, in turn, greater than HUT. Reduced MBF during HPO HDT exercise had the functional consequence of a significant increase in muscle electromyographic index, revealing the effects of MPP on O2 delivery during exercise.


2010 ◽  
Vol 108 (2) ◽  
pp. 349-355 ◽  
Author(s):  
Jacqueline K Limberg ◽  
Michael D. De Vita ◽  
Gregory M. Blain ◽  
William G. Schrage

Exercise is a common nonpharmacological way to combat obesity; however, no studies have systematically tested whether obese humans exhibit reduced skeletal muscle blood flow during dynamic exercise. We hypothesized that exercise-induced blood flow to skeletal muscle would be lower in young healthy obese subjects (body mass index of >30 kg/m2) compared with lean subjects (body mass index of <25 kg/m2). We measured blood flow (Doppler Ultrasound of the brachial and femoral arteries), blood pressure (auscultation, Finapress), and heart rate (ECG) during rest and two forms of single-limb, steady-state dynamic exercise: forearm exercise (20 contractions/min at 4, 8, and 12 kg) and leg exercise (40 kicks/min at 7 and 14 W). Forearm exercise increased forearm blood flow (FBF) similarly in both groups ( P > 0.05; obese subjects n = 9, lean subjects n = 9). When FBF was normalized for perfusion pressure, forearm vascular conductance was not different between groups at increasing workloads ( P > 0.05). Leg exercise increased leg blood flow (LBF) similarly in both groups ( P > 0.05; obese subjects n = 10, lean subjects n = 12). When LBF was normalized for perfusion pressure, leg vascular conductance was not different between groups at increasing workloads ( P > 0.05). These results were confirmed when relative blood flow was expressed at average relative workloads. In conclusion, our results show that obese subjects exhibited preserved FBF and LBF during dynamic exercise.


1987 ◽  
Vol 253 (5) ◽  
pp. H993-H1004 ◽  
Author(s):  
M. H. Laughlin

An appreciation for the potential of skeletal muscle vascular beds for blood flow (blood flow capacity) is required if one is to understand the limits of the cardiorespiratory system in exercise. To assess this potential, an index of blood flow capacity that can be objectively measured is required. One obvious index would be to measure maximal muscle blood flow (MBF). However, a unique value for maximal MBF cannot be measured, since once maximal vasodilation is attained MBF is a function of perfusion pressure. Another approach would be to measure maximal or peak vascular conductance. However, peak vascular conductance is different among skeletal muscles composed of different fiber types and is a function of perfusion pressure during peak vasodilation within muscle composed of a given fiber type. Also, muscle contraction can increase or decrease blood flow and/or the apparent peak vascular conductance depending on the experimental preparation and the type of muscle contraction. Blood flows and calculated values of conductance appear to be greater during rhythmic contractions (with the appropriate frequency and duration) than observed in resting muscle during what is called "maximal" vasodilation. Moreover, dynamic exercise in conscious subjects produces the greatest skeletal muscle blood flows. The purpose of this review is to consider the interaction of the determinants of muscle blood flow during locomotory exercise. Emphasis is directed toward the hypothesis that the "muscle pump" is an important determinant of perfusion of active skeletal muscle. It is concluded that, during normal dynamic exercise, MBF is determined by skeletal muscle vascular conductance, the perfusion pressure gradient, and the efficacy of the muscle pump.


1990 ◽  
Vol 69 (2) ◽  
pp. 407-418 ◽  
Author(s):  
L. B. Rowell ◽  
D. S. O'Leary

The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.


1992 ◽  
Vol 262 (1) ◽  
pp. R90-R98 ◽  
Author(s):  
R. F. Wideman ◽  
R. P. Glahn ◽  
W. G. Bottje ◽  
K. R. Holmes

Using a simplified avian kidney model, renal arterial perfusion pressure (RAPP) was reduced from 120 (control) to 70 mmHg (near the glomerular filtration rate autoregulatory limit) and then to 46 mmHg (below the glomerular filtration rate autoregulatory range) in kidneys with ambient or partially restricted renal portal flow. Renal blood flow (RBF) was measured with a thermal pulse decay (TPD) system, using TPD thermistor probes inserted at three locations to evaluate regional differences in RBF. The clearance (CPAH) and extraction of p-aminohippuric acid were used to calculate renal plasma flow (RPF). CPAH, RPF, and RBF values were consistently lower for kidneys with restricted portal flow than for kidneys with ambient portal flow. Reducing RAPP to 46 mmHg did not significantly reduce CPAH, RPF, or RBF in the ambient group but did significantly reduce CPAH and RPF (regressed on RAPP) in the restricted group. RBF was not significantly affected when RAPP was reduced in the restricted group, although significant regional differences in blood flow were recorded. Renal vascular resistance decreased significantly as RAPP was reduced to 46 mmHg in the ambient group, confirming the renal autoregulatory response. In separate validation studies, significant reductions in RBF were detected by the TPD system during acute obstructions of portal and/or arterial flow. Overall, the results support previous evidence that avian RBF remains constant over a wide range of RAPPs. Observations of nonuniform intrarenal distributions of portal blood flow suggest that the portal system maintains the constancy of RBF in regions with proportionately high portal-to-arterial flow ratios.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Chad C. Wiggins ◽  
Paolo B. Dominelli ◽  
Jonathon W. Senefeld ◽  
John R.A. Shepherd ◽  
Sarah E. Baker ◽  
...  

2004 ◽  
Vol 97 (1) ◽  
pp. 384-392 ◽  
Author(s):  
Loring B. Rowell

This perspective examines origins of some key ideas central to major issues to be addressed in five subsequent mini-reviews related to Skeletal and Cardiac Muscle Blood Flow. The questions discussed are as follows. 1) What causes vasodilation in skeletal and cardiac muscle and 2) might the mechanisms be the same in both? 3) How important is muscle's mechanical contribution (via muscle pumping) to muscle blood flow, including its effect on cardiac output? 4) Is neural (vasoconstrictor) control of muscle vascular conductance and muscle blood flow significantly blunted in exercise by muscle metabolites and what might be a dominant site of action? 5) What reflexes initiate neural control of muscle vascular conductance so as to maintain arterial pressure at its baroreflex operating point during dynamic exercise, or is muscle blood flow regulated so as to prevent accumulation of metabolites and an ensuing muscle chemoreflex or both?


Sign in / Sign up

Export Citation Format

Share Document