scholarly journals Genomic Analysis of High-Altitude Adaptation

2011 ◽  
Vol 10 (2) ◽  
pp. 59-61 ◽  
Author(s):  
Megan J. Wilson ◽  
Colleen Glyde Julian ◽  
Robert C. Roach
2016 ◽  
Vol 48 (8) ◽  
pp. 947-952 ◽  
Author(s):  
Li Yu ◽  
Guo-Dong Wang ◽  
Jue Ruan ◽  
Yong-Bin Chen ◽  
Cui-Ping Yang ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hamed Kharrati-Koopaee ◽  
Esmaeil Ebrahimie ◽  
Mohammad Dadpasand ◽  
Ali Niazi ◽  
Ali Esmailizadeh

2020 ◽  
Author(s):  
Ke Cao ◽  
Zhen Peng ◽  
Xing Zhao ◽  
Yong Li ◽  
Kuozhan Liu ◽  
...  

AbstractAs a foundation to understand the molecular mechanisms of peach evolution and high-altitude adaptation, we performed de novo genome assembling of four wild relatives of P. persica, P. mira, P. kansuensis, P. davidiana and P. ferganensis. Through comparative genomic analysis, abundant genetic variations were identified in four wild species when compared to P. persica. Among them, a deletion, located at the promoter of Prupe.2G053600 in P. kansuensis, was validated to regulate the resistance to nematode. Next, a pan-genome was constructed which comprised 15,216 core gene families among four wild peaches and P. perisca. We identified the expanded and contracted gene families in different species and investigated their roles during peach evolution. Our results indicated that P. mira was the primitive ancestor of cultivated peach, and peach evolution was non-linear and a cross event might have occurred between P. mira and P. dulcis during the process. Combined with the selective sweeps identified using accessions of P. mira originating from different altitude regions, we proposed that nitrogen recovery was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. The pan-genome constructed in our study provides a valuable resource for developing elite cultivars, studying the peach evolution, and characterizing the high-altitude adaptation in perennial crops.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Neena Amatya Gorkhali ◽  
Kunzhe Dong ◽  
Min Yang ◽  
Shen Song ◽  
Adiljian Kader ◽  
...  

Author(s):  
Pamela Wiener ◽  
Christelle Robert ◽  
Abulgasim Ahbara ◽  
Mazdak Salavati ◽  
Ayele Abebe ◽  
...  

Abstract Great progress has been made over recent years in the identification of selection signatures in the genomes of livestock species. This work has primarily been carried out in commercial breeds for which the dominant selection pressures, are associated with artificial selection. As agriculture and food security are likely to be strongly affected by climate change, a better understanding of environment-imposed selection on agricultural species is warranted. Ethiopia is an ideal setting to investigate environmental adaptation in livestock due to its wide variation in geo-climatic characteristics and the extensive genetic and phenotypic variation of its livestock. Here, we identified over three million single nucleotide variants across 12 Ethiopian sheep populations and applied landscape genomics approaches to investigate the association between these variants and environmental variables. Our results suggest that environmental adaptation for precipitation-related variables is stronger than that related to altitude or temperature, consistent with large-scale meta-analyses of selection pressure across species. The set of genes showing association with environmental variables was enriched for genes highly expressed in human blood and nerve tissues. There was also evidence of enrichment for genes associated with high-altitude adaptation although no strong association was identified with hypoxia-inducible-factor (HIF) genes. One of the strongest altitude-related signals was for a collagen gene, consistent with previous studies of high-altitude adaptation. Several altitude-associated genes also showed evidence of adaptation with temperature, suggesting a relationship between responses to these environmental factors. These results provide a foundation to investigate further the effects of climatic variables on small ruminant populations.


2011 ◽  
Vol 22 (5-6) ◽  
pp. 181-190 ◽  
Author(s):  
Yongjun Luo ◽  
Wenxiang Gao ◽  
Fuyu Liu ◽  
Yuqi Gao

2010 ◽  
Vol 48 (5-6) ◽  
pp. 418-427 ◽  
Author(s):  
Liangde Kuang ◽  
Yucai Zheng ◽  
Yaqiu Lin ◽  
Yaou Xu ◽  
Suyu Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document