high altitude adaptation
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 61)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Yang ◽  
Haonan Yuan ◽  
Tianliang Yang ◽  
Yongqing Li ◽  
Caixia Gao ◽  
...  

To adapt to a low-oxygen environment, Tibetan pigs have developed a series of unique characteristics and can transport oxygen more effectively; however, the regulation of the associated processes in high-altitude animals remains elusive. We performed mRNA-seq and miRNA-seq, and we constructed coexpression regulatory networks of the lung tissues of Tibetan and Landrace pigs. HBB, AGT, COL1A2, and EPHX1 were identified as major regulators of hypoxia-induced genes that regulate blood pressure and circulation, and they were enriched in pathways related to signal transduction and angiogenesis, such as HIF-1, PI3K-Akt, mTOR, and AMPK. HBB may promote the combination of hemoglobin and oxygen as well as angiogenesis for high-altitude adaptation in Tibetan pigs. The expression of MMP2 showed a similar tendency of alveolar septum thickness among the four groups. These results indicated that MMP2 activity may lead to widening of the alveolar wall and septum, alveolar structure damage, and collapse of alveolar space with remarkable fibrosis. These findings provide a perspective on hypoxia-adaptive genes in the lungs in addition to insights into potential candidate genes in Tibetan pigs for further research in the field of high-altitude adaptation.


2021 ◽  
Author(s):  
Xibao Wang ◽  
Shengyang Zhou ◽  
Xiaoyang Wu ◽  
Qinguo Wei ◽  
Yongquan Shang ◽  
...  

2021 ◽  
Author(s):  
Kenneth L Chiou ◽  
Mareike C Janiak ◽  
India Schneider-Crease ◽  
Sharmi Sen ◽  
Ferehiwot Ayele ◽  
...  

Survival at high altitude requires adapting to extreme conditions such as environmental hypoxia. To understand high-altitude adaptations in a primate, we assembled the genome of the gelada (Theropithecus gelada), an endemic Ethiopian monkey, and complemented it with population resequencing, hematological, and morphometric data. Unexpectedly, we identified a novel karyotype that may contribute to reproductive isolation between gelada populations. We also identified genomic elements including protein-coding sequences and gene families that exhibit accelerated changes in geladas and may contribute to high-altitude adaptation. Our findings lend insight into mechanisms of speciation and adaptation while providing promising avenues for functional hypoxia research.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1715
Author(s):  
Xu Zhang ◽  
Yanxia Sun ◽  
Jacob B. Landis ◽  
Jun Shen ◽  
Huajie Zhang ◽  
...  

Understanding how species adapt to extreme environments is an extension of the main goals of evolutionary biology. While alpine plants are an ideal system for investigating the genetic basis of high-altitude adaptation, genomic resources in these species are still limited. In the present study, we generated reference-level transcriptomic data of five Saussurea species through high-throughput sequencing and de novo assembly. Three of them are located in the highland of the Qinghai-Tibet Plateau (QTP), and the other two are close relatives distributed in the lowland. A series of comparative and evolutionary genomics analyses were conducted to explore the genetic signatures of adaptive evolution to high-altitude environments. Estimation of divergence time using single-copy orthologs revealed that Saussurea species diversified during the Miocene, a period with extensive tectonic movement and climatic fluctuation on the QTP. We characterized gene families specific to the alpine species, including genes involved in oxidoreductase activity, pectin catabolic process, lipid transport, and polysaccharide metabolic process, which may play important roles in defense of hypoxia and freezing temperatures of the QTP. Furthermore, in a phylogenetic context with the branch model, we identified hundreds of genes with signatures of positive selection. These genes are involved in DNA repair, membrane transport, response to UV-B and hypoxia, and reproductive processes, as well as some metabolic processes associated with nutrient intake, potentially responsible for Saussurea adaptation to the harsh environments of high altitude. Overall, our study provides valuable genomic resources for alpine species and gained helpful insights into the genomic basis of plants adapting to extreme environments.


2021 ◽  
Author(s):  
Xia Wang ◽  
Shengjun Liu ◽  
Hao Zuo ◽  
Weikang Zheng ◽  
Shanshan Zhang ◽  
...  

2021 ◽  
Author(s):  
Rahul K Verma ◽  
Alena Kalyakulina ◽  
Ankit Mishra ◽  
Mikhail Ivanchenko ◽  
Sarika Jalan

Physiological and haplogroup studies performed to understand high-altitude adaptation in humans are limited to individual genes and polymorphic sites. Due to stochastic evolutionary forces, the frequency of a polymorphism is affected by changes in the frequency of a nearby polymorphism on the same DNA sample making them connected in terms of evolution. Here, first, we provide a method to model these mitochondrial polymorphisms as 'co-mutation networks' for three high-altitude populations, Tibetan, Ethiopian and Andean. Then, by transforming these co-mutation networks into weighted and undirected gene-gene interaction (GGI) networks, we were able to identify functionally enriched genetic interactions ofCYBandCO3genes in Tibetan and Andean populations, while NADH dehydrogenase genes in the Ethiopian population playing a significant role in high altitude adaptation. These co-mutation-based genetic networks provide insights into the role of different sets of genes in high-altitude adaptation human sub-populations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Ma ◽  
Qin Ga ◽  
Ri-Li Ge ◽  
Shuang Ma

Hematological features are one of the best-known aspects of high-altitude adaptation in Tibetans. However, it is still unclear whether the intestinal microbiota is associated with the hematology profile. In this study, routine blood tests and 16S rRNA gene sequencing were used to investigate the differences in the intestinal microbiota and hematological parameters of native Tibetan herders and Han immigrants sampled at 3,900 m. The blood test results suggested that the platelet counts (PLTs) were significantly higher in native Tibetans than the Han immigrants. The feces of the native Tibetans had significantly greater microbial diversity (more different species: Simpson’s and Shannon’s indices) than that of the Han immigrants. The native Tibetans also had a different fecal microbial community structure than the Han immigrants. A Bray–Curtis distance-based redundancy analysis and envfit function test showed that body mass index (BMI) and PLT were significant explanatory variables that correlated with the fecal microbial community structure in native Tibetans. Spearman’s correlation analysis showed that Megamonas correlated positively with BMI, whereas Bifidobacterium correlated negatively with BMI. Alistipes and Parabacteroides correlated positively with the PLT. Succinivibrio correlated positively with SpO2. Intestinibacter correlated negatively with the red blood cell count, hemoglobin, and hematocrit (HCT). Romboutsia correlated negatively with HCT, whereas Phascolarctobacterium correlated positively with HCT. A functional analysis showed that the functional capacity of the gut microbial community in the native Tibetans was significantly related to carbohydrate metabolism. These findings suggest that the hematological profile is associated with the fecal microbial community, which may influence the high-altitude adaptation/acclimatization of Tibetans.


Sign in / Sign up

Export Citation Format

Share Document