scholarly journals Effects of exercise and pacing loads on myocardial amino acid balance in patients with normal and stenotic coronary arteries, with special reference to branched chain amino acids.

1993 ◽  
Vol 57 (4) ◽  
pp. 272-282 ◽  
Author(s):  
YOSHIHARU YAMADA ◽  
TADASHI ISHIHARA ◽  
MASATAKA FUJIWARA ◽  
SHIGEMI TAMOTO ◽  
ICHIRO SEKI ◽  
...  
1978 ◽  
Vol 24 (10) ◽  
pp. 1158-1163
Author(s):  
Gérald Proteau ◽  
Marvin Silver

The heterotrophic growth of Thiobacillus acidophilus was inhibited by branched-chain amino acids; valine, isoleucine, and leucine. The inhibition by valine and leucine were partially reversed by isoleucine, and the inhibition by isoleucine was partially reversed by valine. Inhibitions by methionine or threonine were partially reversed when both amino acids were present in the growth medium. Inhibition by tyrosine was increased by phenylalanine or tryptophan. Cystine completely inhibited growth. Other amino acids tested produced little or no inhibition.Acetohydroxy acid synthetase (AHAS) activity was demonstrated in crude extracts of T. acidophilus. In crude extracts the optimum pH was 8.5 with a shift to 9.0 in the presence of valine. Valine was the only branched-chain amino acid which inhibited the AHAS activity. The presence of only one peak of AHAS activity upon centrifugation in linear glycerol density gradients demonstrated that the AHAS activity sediments as one component.


2019 ◽  
Vol 1 (5) ◽  
pp. 532-545 ◽  
Author(s):  
Samantha M. Solon-Biet ◽  
Victoria C. Cogger ◽  
Tamara Pulpitel ◽  
Devin Wahl ◽  
Ximonie Clark ◽  
...  

1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


1983 ◽  
Vol 244 (2) ◽  
pp. E151-E158 ◽  
Author(s):  
J. T. Brosnan ◽  
K. C. Man ◽  
D. E. Hall ◽  
S. A. Colbourne ◽  
M. E. Brosnan

Amino acid concentrations in whole blood, liver, kidney, skeletal muscle, and brain were measured and arteriovenous differences calculated for head, hindlimb, kidney, gut, and liver in control and streptozotocin-diabetic rats. In the control rats, glutamine was released by muscle and utilized by intestine, intestine released citrulline and alanine, liver removed alanine, and the kidneys removed glycine and produced serine. In diabetic rats, the major changes from the pattern of fluxes seen in the normal rat were the release of many amino acids from muscle, with glutamine and alanine predominating, and the uptake of these amino acids by the liver. Glutamine removal by the intestine was suppressed in diabetes, but a large renal uptake of glutamine was evident. Branched-chain amino acids were removed by the diabetic brain, and consequently, brain levels of a number of large neutral amino acids were decreased in diabetes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karin Shimada ◽  
Isao Matsui ◽  
Kazunori Inoue ◽  
Ayumi Matsumoto ◽  
Seiichi Yasuda ◽  
...  

Abstract Dietary phosphate intake is closely correlated with protein intake. However, the effects of the latter on phosphate-induced organ injuries remain uncertain. Herein, we investigated the effects of low (10.8%), moderate (23.0%), and high (35.2%) dietary casein and egg albumin administration on phosphate-induced organ injuries in rats. The moderate and high casein levels suppressed renal tubulointerstitial fibrosis and maintained mitochondrial integrity in the kidney. The serum creatinine levels were suppressed only in the high casein group. Phosphate-induced muscle weakness was also ameliorated by high dietary casein. The urinary and fecal phosphate levels in the early experiment stage showed that dietary casein did not affect phosphate absorption from the intestine. High dietary egg albumin showed similar kidney protective effects, while the egg albumin effects on muscle weakness were only marginally significant. As the plasma branched-chain amino acid levels were elevated in casein- and egg albumin-fed rats, we analyzed their effects. Dietary supplementation of 10% branched-chain amino acids suppressed phosphate-induced kidney injury and muscle weakness. Although dietary protein restriction is recommended in cases of chronic kidney disease, our findings indicate that the dietary casein, egg albumin, and branched-chain amino acid effects might be reconsidered in the era of a phosphate-enriched diet.


Sign in / Sign up

Export Citation Format

Share Document