dietary amino acid
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 49)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Han Fang ◽  
Kirsten P. Stone ◽  
Laura A. Forney ◽  
Desiree Wanders ◽  
Thomas W. Gettys

FGF21 is a potent metabolic regulator of energy balance, body composition, lipid metabolism, and glucose homeostasis. Initial studies reported that it was increased by fasting and the associated increase in ketones, but more recent work points to the importance of dietary protein and sensing of essential amino acids in FGF21 regulation. For example, dietary restriction of methionine produces a rapid transcriptional activation of hepatic FGF21 that results in a persistent 5- to 10-fold increase in serum FGF21. Although FGF21 is a component of a complex transcriptional program activated by methionine restriction (MR), loss-of-function studies show that FGF21 is an essential mediator of the resulting effects of the MR diet on energy balance, remodeling of adipose tissue, and enhancement of insulin sensitivity. These studies also show that FGF21 signaling in the brain is required for the MR diet-induced increase in energy expenditure (EE) and reduction of adiposity. Collectively, the evidence supports the view that the liver functions as a sentinel to detect and respond to changes in dietary amino acid composition, and that the resulting mobilization of hepatic FGF21 is a key element of the homeostatic response. These findings raise the interesting possibility that therapeutic diets could be developed that produce sustained, biologically effective increases in FGF21 by nutritionally modulating its transcription and release.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3906
Author(s):  
Michael Mazzulla ◽  
Nathan Hodson ◽  
Matthew Lees ◽  
Paula J. Scaife ◽  
Kenneth Smith ◽  
...  

The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg−1) crystalline amino acid (0.25 g·kg−1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = −0.76, p = 0.04) and EXFED (r = −0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.


Author(s):  
Mais Jubouri ◽  
Giancarlo G.M. Talarico ◽  
Jean-Michel Weber ◽  
Jan A. Mennigen

In rainbow trout, dietary carbohydrates are poorly metabolized compared to other macronutrients. One prevalent hypothesis suggests that high dietary amino acid levels could contribute to the poor utilization of carbohydrates in trout. In mammals, alanine is considered an important gluconeogenic precursor, but has recently been found to stimulate AMP-activated protein kinase (AMPK) to reduce glucose levels. In trout, the effect of alanine on glucose fluxes is unknown. The goal of this study was to determine the effects of 4h exogenous alanine infusion on glucose metabolism in rainbow trout. Glucose fluxes, glucose appearance (Ra), and disposal (Rd) were measured in vivo. Key glycolytic and gluconeogenic enzyme expression and activity and cell signaling molecules relevant to glucose metabolism were assessed in liver and muscle. Results show that alanine inhibits Ra glucose (from 13.2+/-2.5 to 7.3+/-1.6 micromol / kg min) and Rd glucose (from 13.2+/-2.5 to 7.4+/-1.5 micromol / kg min) and the slight mismatch between Ra and Rd caused a reduction in glycemia, similar to the effects of insulin in trout. The reduction in Rd glucose can be partially explained by a reduction in glut4b expression in red muscle. In contrast to mammals, alanine-dependent glucose-lowering effects in trout did not involve hepatic AMPK activation, suggesting a different mechanistic basis. Interestingly, protein kinase B (AKT) activation increased only in muscle similar to effects observed in insulin-infused trout. We speculate that alanine-dependent effects were probably mediated through stimulation of insulin secretion which could indirectly promote alanine oxidation to provide the needed energy.


Author(s):  
Golaleh Asghari ◽  
Farshad Teymoori ◽  
Hossein Farhadnejad ◽  
Parvin Mirmiran ◽  
Fereidoun Azizi

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1143
Author(s):  
José Prates ◽  
João Freire ◽  
André de Almeida ◽  
Cátia Martins ◽  
David Ribeiro ◽  
...  

In order to investigate the effect of a dietary amino acid mixture supplementation in lipopolysaccharide (LPS)-challenged weaned piglets, twenty-seven 28-day-old (8.2 ± 1.0 kg) newly weaned piglets were randomly allocated to one of three experimental treatments for five weeks. Diet 1: a CTRL treatment. Diet 2: an LPS treatment, where piglets were intraperitoneally administered LPS (25 μg/kg) on day 7. Diet 3: an LPS+MIX treatment, where piglets were intraperitoneally administered LPS on day 7 and fed a diet supplemented with a mixture of 0.3% of arginine, branched-chain amino acids (leucine, valine, and isoleucine), and cystine (MIX). Blood samples were drawn on day 10 and day 35, and serum was analysed for selected chemical parameters and proteomics. The LPS and LPS+MIX groups exhibited an increase in haptoglobin concentrations on day 10. The LPS group showed an increased cortisol concentration, while this concentration was reduced in the LPS+MIX group compared to the control group. Similarly, the LPS+MIX group showed a decreased haptoglobin concentration on day 35 compared to the two other groups. Immunoglobulin concentrations were affected by treatments. Indeed, on day 10, the concentrations of IgG and IgM were decreased by the LPS challenge, as illustrated by the lower concentrations of these two immunoglobulins in the LPS group compared to the control group. In addition, the supplementation with the amino acid mixture in the LPS+MIX further decreased IgG and increased IgM concentrations compared to the LPS group. Although a proteomics approach did not reveal important alterations in the protein profile in response to treatments, LPS-challenged piglets had an increase in proteins linked to the immune response, when compared to piglets supplemented with the amino acid mixture. Overall, data indicate that LPS-challenged piglets supplemented with this amino acid mixture are more protected against the detrimental effects of LPS.


Author(s):  
Isabel Iguacel ◽  
Julie A. Schmidt ◽  
Aurora Perez-Cornago ◽  
Heleen Van Puyvelde ◽  
Ruth Travis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document