scholarly journals Analysis of the cellular functions of the small GTP-binding protein rho p21 with Clostridium botulinum C3 exoenzyme.

1997 ◽  
Vol 109 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Yuji SAITO
1999 ◽  
Vol 276 (4) ◽  
pp. G915-G923 ◽  
Author(s):  
Fumihiko Nozu ◽  
Yasuhiro Tsunoda ◽  
Adenike I. Ibitayo ◽  
Khalil N. Bitar ◽  
Chung Owyang

We evaluated intracellular pathways responsible for the activation of the small GTP-binding protein Rho p21 in rat pancreatic acini. Intact acini were incubated with or without CCK and carbachol, and Triton X-100-soluble and crude microsomes were used for Western immunoblotting. When a RhoA-specific antibody was used, a single band at the location of 21 kDa was detected. CCK (10 pM–10 nM) and carbachol (0.1–100 μM) dose dependently increased the amount of immunodetectable RhoA with a peak increase occurring at 3 min. High-affinity CCK-A-receptor agonists JMV-180 and CCK-OPE (1–1,000 nM) did not increase the intensities of the RhoA band, suggesting that stimulation of RhoA is mediated by the low-affinity CCK-A receptor. Although an increase in RhoA did not require the presence of extracellular Ca2+, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM abolished the appearance of the RhoA band in response to CCK and carbachol. The Gq protein inhibitor G protein antagonist-2A (10 μM) and the phospholipase C (PLC) inhibitor U-73122 (10 μM) markedly reduced RhoA bands in response to CCK. The protein kinase C (PKC) activator phorbol ester (10–1,000 nM) dose dependently increased the intensities of the RhoA band, which were inhibited by the PKC inhibitor K-252a (1 μM). The pp60c- src inhibitor herbimycin A (6 μM) inhibited the RhoA band in response to CCK, whereas the calmodulin inhibitor W-7 (100 μM) and the phosphoinositide 3-kinase inhibitor wortmannin (6 μM) had no effect. RhoA was immunoprecipitated with Src, suggesting association of RhoA with Src. Increases in mass of this complex were observed with CCK stimulation. In permeabilized acini, the Rho inhibitor Clostridium botulinum C3 exoenzyme dose dependently inhibited amylase secretion evoked by a Ca2+ concentration with an IC50 of C3 exoenzyme at 1 ng/ml. We concluded that the small GTP-binding protein RhoA p21 exists in pancreatic acini and appears to be involved in the mediation of pancreatic enzyme secretion evoked by CCK and carbachol. RhoA pathways are involved in the activation of PKC and Src cascades via Gq protein and PLC.


1999 ◽  
Vol 82 (09) ◽  
pp. 1177-1181 ◽  
Author(s):  
Hubert de Leeuw ◽  
Pauline Wijers-Koster ◽  
Jan van Mourik ◽  
Jan Voorberg

SummaryIn endothelial cells von Willebrand factor (vWF) and P-selectin are stored in dense granules, so-called Weibel-Palade bodies. Upon stimulation of endothelial cells with a variety of agents including thrombin, these organelles fuse with the plasma membrane and release their content. Small GTP-binding proteins have been shown to control release from intracellular storage pools in a number of cells. In this study we have investigated whether small GTP-binding proteins are associated with Weibel-Palade bodies. We isolated Weibel-Palade bodies by centrifugation on two consecutive density gradients of Percoll. The dense fraction in which these subcellular organelles were highly enriched, was analysed by SDS-PAGE followed by GTP overlay. A distinct band with an apparent molecular weight of 28,000 was observed. Two-dimensional gel electrophoresis followed by GTP overlay revealed the presence of a single small GTP-binding protein with an isoelectric point of 7.1. A monoclonal antibody directed against RalA showed reactivity with the small GTP-binding protein present in subcellular fractions that contain Weibel-Palade bodies. The small GTPase RalA was previously identified on dense granules of platelets and on synaptic vesicles in nerve terminals. Our observations suggest that RalA serves a role in regulated exocytosis of Weibel-Palade bodies in endothelial cells.


1998 ◽  
Vol 79 (04) ◽  
pp. 832-836 ◽  
Author(s):  
Thomas Fischer ◽  
Christina Duffy ◽  
Gilbert White

SummaryPlatelet membrane glycoproteins (GP) IIb/IIIa and rap1b, a 21 kDa GTP binding protein, associate with the triton-insoluble, activation-dependent platelet cytoskeleton with similar rates and divalent cation requirement. To examine the possibility that GPIIb/IIIa was required for rap1b association with the cytoskeleton, experiments were performed to determine if the two proteins were linked under various conditions. Chromatography of lysates from resting platelets on Sephacryl S-300 showed that GPIIb/IIIa and rap1b were well separated and distinct proteins. Immunoprecipitation of GPIIb/IIIa from lysates of resting platelets did not produce rap1b or other low molecular weight GTP binding proteins and immunoprecipitation of rap1b from lysates of resting platelets did not produce GPIIb/IIIa. Finally, rap1b was associated with the activation-dependent cytoskeleton of platelets from a patient with Glanzmann’s thrombasthenia who lacks surface expressed glycoproteins IIb and IIIa. Based on these findings, we conclude that no association between GPIIb/IIIa and rap1b is found in resting platelets and that rap1b association with the activation-dependent cytoskeleton is at least partly independent of GPIIb/IIIa.


2014 ◽  
Vol 40 (10) ◽  
pp. 1756
Author(s):  
Rong-Bang LIU ◽  
Ming CHEN ◽  
Meng-Meng GUO ◽  
Qing-Lin SI ◽  
Shi-Qing GAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document