gtp binding protein
Recently Published Documents


TOTAL DOCUMENTS

1083
(FIVE YEARS 36)

H-INDEX

99
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bing Si Li ◽  
Ai Lin Jin ◽  
ZiQi Zhou ◽  
Jae Ho Seo ◽  
Byung-Min Choi

Accumulating evidence suggests that developmentally regulated GTP-binding protein 2 (DRG2), an evolutionarily conserved GTP-binding protein, plays an important role in regulating cell growth, inflammation, and mitochondria dynamics. However, the effect of DRG2 in aging remains unclear. In this study, we found that endogenous DRG2 protein expression is upregulated in oxidative stress-induced premature senescence models and tissues of aged mice. Ectopic expression of DRG2 significantly promoted senescence-associated β-galactosidase (SA-β-gal) activity and inhibited cell growth, concomitant with increase in levels of acetyl (ac)-p53 (Lys382), ac-nuclear factor-kB (NF-κB) p65 (Lys310), p21Waf1/Cip1, and p16Ink4a and a decrease in cyclin D1. In this process, reactive oxygen species (ROS) and phosphorylation of H2A histone family member X (H2A.X), forming γ-H2A.X, were enhanced. Mechanistically, ectopic expression of DRG2 downregulated Sirtuin-1 (SIRT1), resulting in augmented acetylation of p53 and NF-κB p65. Additionally, DRG2 knockdown significantly abolished oxidative stress-induced premature senescence. Our results provide a possible molecular mechanism for investigation of cellular senescence and aging regulated by DRG2.


Small GTPases ◽  
2021 ◽  
pp. 1-21
Author(s):  
Mai Izumida ◽  
Katsura Kakoki ◽  
Hideki Hayashi ◽  
Toshifumi Matsuyama ◽  
Yoshinao Kubo

2021 ◽  
Author(s):  
Julien Marcetteau ◽  
Tamàs Matusek ◽  
Frédéric Luton ◽  
Pascal P. Thérond

AbstractWnt signalling is a core pathway involved in a wide range of developmental processes throughout the metazoa.In vitrostudies have suggested that the small GTP binding protein Arf6 regulates upstream steps of Wnt transduction, by promoting the phosphorylation of the Wnt co-receptor, LRP6, and the release of β-catenin from the adherens junctions. To assess the relevance of these previous findingsin vivo, we analyse the consequence of the absence of Arf6 activity onDrosophilawing patterning, a developmental model of Wnt/Wingless signalling. We observed a dominant loss of wing margin bristles and Senseless expression in Arf6 mutant flies, phenotypes characteristic of a defect in high level Wingless signalling. In contrast to previous findings, we show that Arf6 is required downstream of Armadillo/β-catenin stabilisation in Wingless signal transduction. Our data suggest that Arf6 modulates the activity of a downstream nuclear regulator of Pangolin activity in order to control the induction of high level Wingless signalling. Our findings represent a novel regulatory role for Arf6 in Wingless signalling.


Author(s):  
Nuo Cheng ◽  
Hao Zhang ◽  
Shiyan Zhang ◽  
Xiaodan Ma ◽  
Guoyu Meng

AGAP1 is often considered to regulate membrane trafficking, protein transport and actin cytoskeleton dynamics. Recent studies have shown that aberrant expression of AGAP1 is associated with many diseases, including neurodevelopmental disorders and acute lymphoblastic leukemia. It has been proposed that the GTP-binding protein-like domain (GLD) is involved in the binding of cofactors and thus regulates the catalytic activity of AGAP1. To obtain a better understanding of the pathogenic mechanism underpinning AGAP1-related diseases, it is essential to obtain structural information. Here, the GLD (residues 70–235) of AGAP1 was overexpressed in Escherichia coli BL21 (DE3) cells. Affinity and gel-filtration chromatography were used to obtain AGAP1GLD with high purity for crystallization. Using the hanging-drop vapor-diffusion method with the protein at a final concentration of 20 mg ml−1, AGAP1GLD protein crystals of suitable size were obtained. The crystals were found to diffract to 3.0 Å resolution and belonged to space group I4, with unit-cell parameters a = 100.39, b = 100.39, c = 48.08 Å. The structure of AGAP1GLD exhibits the highly conserved functional G1–G5 loops and is generally similar to other characterized ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), implying an analogous function to Arf GAPs. Additionally, this study indicates that AGAP1 could be classified as a type of NTPase, the activity of which might be regulated by protein partners or by its other domains. Taken together, these results provide insight into the regulatory mechanisms of AGAP1 in cell signaling.


Sign in / Sign up

Export Citation Format

Share Document