Book Reviews

2013 ◽  
Vol 51 (1) ◽  
pp. 193-194

Annika Sunden of The Swedish Pensions Agency reviews, “Saving for Retirement: Intention, Context, and Behavior” by Gordon L. Clark, Kendra Strauss, and Janelle Knox-Hayes. The EconLit abstract of this book begins: “Explores the behavioral revolution and its implications for understanding financial decision making and saving for the future. Discusses environment and behavior; risk propensities; sophistication, salience, and scale; being in the market; housing, retirement saving, and risk aversion; the demand for annuities; the ““new” paternalism; and pension adequacy and sustainability. Clark is Halford Mackinder Professor of Geography at the University of Oxford, Sir Louis Matheson Distinguished Visiting Professor at Monash University, and a Professorial Fellow at St. Peter's College, Oxford. Strauss is a University Lecturer in the Geography Department at the University of Cambridge and a Research Associate in the School of Geographical and Earth Sciences at the University of Glasgow. Knox-Hayes is Assistant Professor in the School of Public Policy at the Georgia Institute of Technology and Research Associate at the Oxford University School of Geography and the Environment. Bibliography; name and subject indexes.”

Author(s):  
Franklin G. Mixon ◽  
Kamal P. Upadhyaya

This study examines the impact of research published in the two core public choice journals – Public Choice and the Journal of Public Finance and Public Choice – during the five-year period from 2010 through 2014. Scholars representing almost 400 universities contributed impactful research to these journals over this period, allowing us to rank institutions on the basis of citations to this published research. Our work indicates that public choice scholarship emanating from non-US colleges and universities has surged, with the University of Göttingen, University of Linz, Heidelburg University, University of Oxford, University of Konstanz, Aarhus University, University of Groningen, Paderborn University, University of Minho and University of Cambridge occupying ten of the top 15 positions in our worldwide ranking. Even so, US-based institutions still maintain a lofty presence, with Georgetown University, Emory University, the University of Illinois and George Mason University each holding positions among the top five institutions worldwide.


1988 ◽  
Vol 27 (2) ◽  
pp. 190-197
Author(s):  
Thomas F. Mayer

2020 ◽  
Vol 13 (11) ◽  
pp. dmm047506

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Katie Lloyd and Stamatia Papoutsopoulou are co-first authors on ‘Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease’, published in DMM. Katie conducted the research described in this article while a postdoctoral research associate in Prof. Chris Probert's lab at the University of Liverpool, Liverpool, UK. She is now a lecturer in pharmacology at the University of Chester, Chester, UK. Her research focuses on personalising medicine by combining innovative experimental approaches to identify biomarkers of inflammatory disease, drug response and mechanisms of drug resistance, which consider complex factors such as inter-patient variability and co-morbidities. Stamatia conducted the research described in this article while a postdoctoral research associate in Werner Muller's lab at the University of Manchester, Manchester, UK. She is currently a postdoctoral research associate in the lab of Mark Pritchard at the University of Liverpool, Liverpool, UK, investigating the regulation of transcriptional responses during inflammation and the impact of environmental factors on them, and has just accepted the position of assistant professor at the University of Thessaly, Greece.


Author(s):  
Douglass F. Taber

Control of the absolute configuration of adjacent alkylated stereogenic centers is a classic challenge in organic synthesis. In the course of the synthesis of (–)-hybridalactone 4, Alois Fürstner of the Max-Planck-Institut Mülheim effected (J. Am. Chem. Soc. 2011, 133, 13471) catalytic enantioselective conjugate addition to the simple acceptor 1. The initial adduct, formed in 80% ee, could readily be recrystallized to high ee. In an alternative approach to high ee 2,3-dialkyl γ-lactones, David M. Hodgson of the University of Oxford cyclized (Org. Lett. 2011, 13, 5751) the alkyne 5 to an aldehyde, which was condensed with 6 to give 7. Coupling with 8 then delivered (+)-anthecotulide 9. The enantiomerically pure diol 10 is readily available from acetylacetone. Weiping Tang of the University of Wisconsin dissolved (Org. Lett. 2011, 13, 3664) the symmetry of 10 by Pd-mediated cyclocarbonylation. The conversion of the lactone 11 to (–)-kumausallene 12 was enabled by an elegant intramolecular bromoetherification. Shoji Kobayshi of the Osaka Institute of Technology developed (J. Org. Chem. 2011, 76, 7096) a powerful oxy-Favorskii rearrangement that enabled the preparation of both four-and five-membered rings with good diastereocontrol, as exemplified by the conversion of 13 to 14. With the electron-withdrawing ether oxygen adjacent to the ester carbonyl, Dibal reduction of 14 proceeded cleanly to the aldehyde. Addition of ethyl lithium followed by deprotection completed the synthesis of (±)-communiol E. En route to (–)-exiguolide 18, Karl A. Scheidt of Northwestern University showed (Angew. Chem. Int. Ed. 2011, 50, 9112) that 16 could be cyclized efficiently to 17. The cyclization may be assisted by a scaffolding effect from the dioxinone ring. Dimeric macrolides such as cyanolide A 21 are usually prepared by lactonization of the corresponding hydroxy acid. Scott D. Rychnovsky of the University of California Irvine devised (J. Am. Chem. Soc. 2011, 133, 9727) a complementary strategy, the double Sakurai dimerization of the silyl acetal 19 to 20.


Author(s):  
Douglass F. Taber

Djamaladdin G. Musaev and Huw M. L. Davies of Emory University effected (Chem. Sci. 2013, 4, 2844) enantioselective cyclopropanation of ethyl acrylate 2 with the α-diazo ester 1 to give 3 in high ee. Philippe Compain of the Université de Strasbourg used (J. Org. Chem. 2013, 78, 6751) SmI2 to cyclize 4 to the cyclobutanol 5. Jianrong (Steve) Zhou of Nanyang Technological University effected (Chem. Commun. 2013, 49, 11758) enantioselective Heck addition of 7 to the prochiral ester 6 to give the cyclopentene 8. Liu-Zhu Gong of USTC, Hefei added (Org. Lett. 2013, 15, 3958) the Rh enolate from the enantioselective ring expansion of the α-diazo ester 9 to the nitroalkene 10, to give 11 in high de. Stephen P. Fletcher of the University of Oxford set (Angew. Chem. Int. Ed. 2013, 52, 7995) the cyclic quaternary center of 14 by the enantioselective conjugate addition to 12 of the alkyl zirconocene derived from 13. Alexandre Alexakis of the University of Geneva reported (Chem. Eur. J. 2013, 19, 15226) high ee from the conjugate addition of alkenyl Al reagents (not illustrated) to 12. Paultheo von Zezschwitz of Philipps-Universität Marburg prepared (Adv. Synth. Catal. 2013, 355, 2651) the silyl enol ether 17 by trapping the intermediate from the conjugate addition of 16 to 15. Stefan Bräse of the Karlsruhe Institute of Technology effected (Eur. J. Org. Chem. 2013, 7110) conjugate addition to the prochiral dienone 18 to give the highly substi­tuted cyclohexenone 19. Ping Tian and Guo-Qiang Lin of the Shanghai Institute of Organic Chemistry cyclized (J. Am. Chem. Soc. 2013, 135, 11700) 20 to the kinetic, less stable epimer of the diketone 21. Rh-mediated intramolecular C–H insertion has been a powerful tool for the con­struction of cyclopentane derivatives. Douglass F. Taber of the University of Delaware found (J. Org. Chem. 2013, 78, 9772) that the Rh carbene derived from 22 was dis­criminating enough to target the more nucleophilic C–H bond, leading to the cyclohexanone 23. Kozo Shishido of the University of Tokushima observed (Org. Lett. 2013, 15, 3666) high diastereoselectivity in the intramolecular Heck cyclization of 24 to 25.


Sign in / Sign up

Export Citation Format

Share Document