scholarly journals Passive Flow Control Around a Semi-Circular Cylinder Using Porous Coatings

2014 ◽  
Vol 6 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Chloé Mimeau ◽  
Iraj Mortazavi ◽  
Georges-Henri Cottet
Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 289
Author(s):  
Imogen Guinness ◽  
Tim Persoons

This paper presents a numerical study on the impact of partial leeward porous coatings on the drag of circular cylinders in cross-flow. Porous coatings are receiving increasing attention for their potential in passive flow control. An unsteady Reynolds-averaged Navier–Stokes model was developed that agreed well with the numerical and experimental literature. Using the two-equation shear stress transport k−ω turbulence model, 2D flow around a circular cylinder was simulated at Re = 4.2×104 with five different angles of partial leeward porous coatings and a full porous coating. For coating angles below 130∘, the coating resulted in an increase in pressure on the leeward side of the cylinder. There was a significant reduction in the fluctuation of the pressure and aerodynamic forces and a damping effect on vortex shedding. Flow separation occurred earlier; the wake was widened; and there was a decrease in turbulence intensity at the outlet. A reduction of drag between 5 and 16% was measured, with the maximum at a 70∘ coating angle. The results differed greatly for a full porous coating and a 160∘ coating, which were found to cause an increase in drag of 42% and 43%, respectively. The results showed that leeward porous coatings have a clear drag-reducing potential, with possibilities for further research into the optimum configuration.


2021 ◽  
Author(s):  
Anurag Bhattacharyya ◽  
Mark Bashkawi ◽  
Se Yeon Kim ◽  
Wanzheng Zheng ◽  
Theresa Saxton-Fox ◽  
...  

2021 ◽  
Author(s):  
Elena-Alexandra Chiulan ◽  
Costin Ioan Cosoiu ◽  
Andrei-Mugur Georgescu ◽  
Anton Anton ◽  
Mircea Degeratu

Sign in / Sign up

Export Citation Format

Share Document