A Novel Passive Flow Control Method for Underwater Vehicles

Author(s):  
R. Kant ◽  
S. Maity
2018 ◽  
Vol 35 (3) ◽  
pp. 229-239 ◽  
Author(s):  
Jiaguo Hu ◽  
Rugen Wang ◽  
Peigen Wu ◽  
Chen He

Abstract Separation in compressor cascade triggers flow loss and instability. This paper presents a passive flow control method by introducing a slot into the blade. The slot induces self-adapted jet, while the jet flow is used to suppress cascade’s separation. To study the flow control effect, experiments were conducted and flow field details were given by validated numerical simulations. The results show that a well-designed slot carries adequate jet airflow from pressure side (PS) to suction side (SS) due to the great pressure fall between the two sides. The jet airflow delays suction side separation within specific incidence angles, so the performance of cascade achieves considerable improvements. It enables to be concluded that the slot carries jet flow to SS separation zone, and then the self-adapted jet flow re-energizes low momentum fluid and suppresses vortices in the separation which are negative to the cascade flow.


Author(s):  
Bo Wang ◽  
Yanhui Wu

Corner separation contributes greatly to the loss and the passage blockage in a compressor stage. In order to mitigate the corner separation and improve the aerodynamic performance of compressors, a novel passive flow control method, an off-surface micro-blade installed upstream of the separation onset location, was proposed. A numerical investigation has was performed in an annular compressor cascade to assess the control effectiveness of the micro-blade. The results show that the location of the micro-blade affects the control effect significantly. The application of the well-designed micro-blade enhances the diffusion capacity considerably under the inflow incidence from −2° to +10°, accompanied by a slight loss reduction at some particular incidences. Detailed analysis of the predicted flow field was carried out to understand the underlying mechanism. It indicates that a “jet” forms upstream of the separation onset location with the application of the micro-blade. The formation of the jet reduces the thickness of boundary layer on the suction surface and builds a “jet barrier” near the endwall to hinder the accumulation of the low momentum fluid. The influence of the incidence was also investigated. It is concluded that the incidence increase has both positive and negative influences on the control effect of the micro-blade. As a result, the performance of the micro-blade is sensitive to the variation of inlet incidence.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


2021 ◽  
Author(s):  
Anurag Bhattacharyya ◽  
Mark Bashkawi ◽  
Se Yeon Kim ◽  
Wanzheng Zheng ◽  
Theresa Saxton-Fox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document