scholarly journals RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization

RNA ◽  
2012 ◽  
Vol 18 (4) ◽  
pp. 771-782 ◽  
Author(s):  
I. Gonzalez ◽  
D. Rakitina ◽  
M. Semashko ◽  
M. Taliansky ◽  
S. Praveen ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Gao ◽  
Jinrui Yang ◽  
Xiaobei Zhang ◽  
Aizhong Chen ◽  
Zhouhang Gu ◽  
...  

The 2b proteins encoded by cucumber mosaic virus (CMV) subgroup I strains suppress RNA silencing primarily by competitively binding small RNAs (sRNAs) in the host cell cytoplasm. Interestingly, 2b proteins encoded by CMV subgroup II strains accumulate predominantly in nuclei. Here we determined that whereas the 2b protein (Fny2b) of subgroup IA strain Fny-CMV is highly effective in suppressing both sense RNA-induced and inverted repeat-induced posttranscriptional gene silencing, the 2b protein (LS2b) of the subgroup II strain LS-CMV was not as effective. Reducing nuclear accumulation of LS2b by mutating a residue in its nuclear localization sequence had no effect on RNA silencing suppressor activity, while attenuated viral symptoms. Electrophoretic mobility shift assays showed that the sRNA binding of LS2b was weaker and more selective than that of Fny2b. The domain determining the differential sRNA-binding ability was delimited to the putative helix α1 region. Moreover, LS2b mutants that completely lost suppressor activity still retained their weak sRNA-binding ability, suggesting that sRNA binding is not sufficient for LS2b to suppress RNA silencing. Considering the subgroup I strain-encoded 2b proteins that require sRNA-binding ability for the suppression of RNA silencing, we suggest that in addition to binding sRNA, the 2b proteins of subgroup II CMV strains would require extra biological activities to achieve RNA silencing inhibition.


2004 ◽  
Vol 85 (10) ◽  
pp. 3135-3147 ◽  
Author(s):  
Yongzeng Wang ◽  
Tzvi Tzfira ◽  
Victor Gaba ◽  
Vitaly Citovsky ◽  
Peter Palukaitis ◽  
...  

The 2b protein encoded by Cucumber mosaic virus (CMV) has been shown to be a silencing suppressor and pathogenicity determinant in solanaceous hosts, but a movement determinant in cucumber. In addition, synergistic interactions between CMV and Zucchini yellow mosaic virus (ZYMV) have been described in several cucurbit species. Here, it was shown that deletion of the 2b gene from CMV prevented extensive systemic movement of the virus in zucchini squash, which could not be complemented by co-infection with ZYMV. Thus, ZYMV expressing a silencing suppressor with a different target could not complement the CMV 2b-specific movement function. Expression of the 2b protein from an attenuated ZYMV vector resulted in a synergistic response, largely restoring infection symptoms of wild-type ZYMV in several cucurbit species. Deletion or alteration of either of two nuclear localization signals (NLSs) did not affect nuclear localization in two assays, but did affect pathogenicity in several cucurbit species, whilst deletion of both NLSs led to loss of nuclear localization. The 2b protein interacted with an Arabidopsis thaliana karyopherin α protein (AtKAPα) in the yeast two-hybrid system, as did each of the two single NLS-deletion mutants. However, 2b protein containing a deletion of both NLSs was unable to interact with AtKAPα. These data suggest that the 2b protein localizes to the nucleus by using the karyopherin α-mediated system, but demonstrate that nuclear localization was insufficient for enhancement of the 2b-mediated pathogenic response in cucurbit hosts. Thus, the sequences corresponding to the two NLSs must have another role leading to pathogenicity enhancement.


2010 ◽  
Vol 5 (6) ◽  
pp. 705-708 ◽  
Author(s):  
Mathew G. Lewsey ◽  
Inmaculada González ◽  
Natalia O. Kalinina ◽  
Peter Palukaitis ◽  
Tomas Canto ◽  
...  

2004 ◽  
Vol 85 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Sang Hyon Kim ◽  
Natalia O. Kalinina ◽  
Igor Andreev ◽  
Eugene V. Ryabov ◽  
Alexander G. Fitzgerald ◽  
...  

Microbiology ◽  
2000 ◽  
Vol 81 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Carl N. Mayers ◽  
Peter Palukaitis ◽  
John P. Carr

The cucumoviral 2b protein is a viral counterdefence factor that interferes with the establishment of virus-induced gene silencing in plants. Synthetic peptides were used to generate an antibody to the 2b protein encoded by the Fny strain of cucumber mosaic virus (Fny-CMV). This polyclonal antibody was able to recognize the Fny-CMV 2b protein in a 10000 g pellet fraction of infected tobacco. No protein of equivalent size was detected in mock-inoculated or tobacco mosaic virus-infected samples. This represents the first demonstration of 2b protein expression by a subgroup I strain of CMV. Subcellular fractionation experiments on CMV-infected tobacco leaf tissue showed that the Fny-CMV 2b protein accumulated within a fraction that sedimented at forces of less than 5000 g and that the 2b protein was solubilized only by treatment with urea or SDS. These results suggested that the 2b protein associates either with the nucleus or cytoskeleton of the host cell. Further analysis showed that the 2b protein was enriched in a fraction that sedimented through a 2·2 M sucrose cushion. This fraction was also enriched in histones, suggesting that the CMV 2b protein associates preferentially with the host cell nucleus.


2017 ◽  
Vol 35 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Mayuko Koizumi ◽  
Yumi Shimotori ◽  
Yuta Saeki ◽  
Sayaka Hirai ◽  
Shin-ichiro Oka ◽  
...  

2007 ◽  
Vol 88 (9) ◽  
pp. 2596-2604 ◽  
Author(s):  
Zhi-You Du ◽  
Fei-Fei Chen ◽  
Qian-Sheng Liao ◽  
Hua-Rong Zhang ◽  
Yan-Fei Chen ◽  
...  

Cucumber mosaic virus (CMV)-encoded 2b protein from subgroup IA or subgroup II was shown to be a determinant of virulence in many solanaceous hosts. In this study, the virulence of 2b proteins from subgroup IB strains was analysed using four intraspecies hybrid viruses, which were generated by precise replacement of the 2b open reading frame (ORF) in subgroup IA strain Fny-CMV with the 2b ORFs of four subgroup IB strains, Cb7-CMV, PGs-CMV, Rad35-CMV and Na-CMV, generating FCb72b-CMV, FPGs2b-CMV, FRad352b-CMV and FNa2b-CMV, respectively. FCb72b-CMV was more virulent than Fny-CMV, and was similar in phenotype to its parental virus Cb7-CMV on the three Nicotiana species tested. FNa2b-CMV also was virulent on these host species, equivalent to Fny-CMV or Na-CMV. However, FRad352b-CMV only caused mild mosaic or undetectable symptoms on all the host species tested, and was less virulent than Fny-CMV or Rad35-CMV. FPGs2b-CMV infected all the host species systemically, and induced either mosaic or barely visible symptoms, demonstrating that the inability of PGs-CMV to infect these three Nicotiana species was not due to its 2b protein. The diverse virulence was shown to be mediated by the 2b proteins rather than the C-terminal overlapping parts of the 2a proteins, and was associated with the level of viral progeny RNA accumulation in systemically infected leaves, but not with the rate of long-distance viral movement in host plants. Through analysis of encapsidation of viral RNAs, there was an apparent correlation between the virulence and the high level of encapsidated RNA 2 in virions of Fny-CMV, FCb72b-CMV and FNa2b-CMV.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Katalin Nemes ◽  
Ákos Gellért ◽  
Asztéria Almási ◽  
Pál Vági ◽  
Réka Sáray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document