scholarly journals The C-terminal 33 amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation

2004 ◽  
Vol 85 (1) ◽  
pp. 221-230 ◽  
Author(s):  
Sang Hyon Kim ◽  
Natalia O. Kalinina ◽  
Igor Andreev ◽  
Eugene V. Ryabov ◽  
Alexander G. Fitzgerald ◽  
...  
2005 ◽  
Vol 86 (4) ◽  
pp. 1213-1222 ◽  
Author(s):  
Seung Kook Choi ◽  
Peter Palukaitis ◽  
Byoung Eun Min ◽  
Mi Yeon Lee ◽  
Jang Kyung Choi ◽  
...  

The basis for differences in the timing of systemic symptom elicitation in zucchini squash between a pepper strain of Cucumber mosaic virus (Pf-CMV) and a cucurbit strain (Fny-CMV) was analysed. The difference in timing of appearance of systemic symptoms was shown to map to both RNA 2 and RNA 3 of Pf-CMV, with pseudorecombinant viruses containing either RNA 2 or RNA 3 from Pf-CMV showing an intermediate rate of systemic symptom development compared with those containing both or neither Pf-CMV RNAs. Symptom phenotype was shown to map to two single-nucleotide changes, both in codons for Ile at aa 267 and 168 (in Fny-CMV RNAs 2 and 3, respectively) to Thr (in Pf-CMV RNAs 2 and 3). The differential rate of symptom development was shown to be due to differences in the rates of cell-to-cell movement in the inoculated cotyledons, as well as differences in the rate of egress of the virus from the inoculated leaves. These data indicate that both the CMV 3a movement protein and the CMV 2a polymerase protein affect the rate of movement of CMV in zucchini squash and that these two proteins function independently of each other in their interactions with the host, facilitating virus movement.


1999 ◽  
Vol 12 (7) ◽  
pp. 628-632 ◽  
Author(s):  
Sek-Man Wong ◽  
Sharon Swee-Chin Thio ◽  
Michael H. Shintaku ◽  
Peter Palukaitis

The M strain of cucumber mosaic virus (CMV) does not infect squash plants systemically and moves very slowly in inoculated cotyledons. Systemic infection and an increase in the rate of local movement were observed when amino acids 129 or 214 of the M-CMV capsid protein (CP) were altered to those present in the Fny strain of CMV. While the opposite alterations to the CP of Fny-CMV inhibited systemic infection of squash, they did not show the same effects on the rates of both cell-to-cell and long-distance movement. However, the ability of CMV to infect squash systemically was affected by the rate of cell-to-cell movement.


2007 ◽  
Vol 88 (12) ◽  
pp. 3445-3451 ◽  
Author(s):  
Min Sook Hwang ◽  
Kyung Nam Kim ◽  
Jeong Hyun Lee ◽  
Young In Park

The cucumber mosaic virus (CMV)-encoded 3a movement protein (MP) is indispensable for CMV movement in plants. We have previously shown that MP interacts directly with the CMV-encoded 2a polymerase protein in vitro. Here, we further dissected this interaction and determined the amino acid sequences that are responsible for the MP and 2a polymerase protein interaction. Both the N-terminal 21 amino acids and the central GDD motif of the 2a polymerase protein were important for interacting with the MP. Although each of the regions alone was sufficient for the interaction with MP, quantitative yeast two-hybrid analyses showed that they acted synergistically to enhance the binding affinity. The MP N-terminal 20 amino acids were sufficient for interacting with the 2a polymerase protein, and the serine residue at position 14 played a critical role in the interaction. Multiple sequence alignment showed that the 2a protein interacting regions and the serine at position 14 in the MP are highly conserved among subgroup I and II CMV isolates.


2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Gao ◽  
Jinrui Yang ◽  
Xiaobei Zhang ◽  
Aizhong Chen ◽  
Zhouhang Gu ◽  
...  

The 2b proteins encoded by cucumber mosaic virus (CMV) subgroup I strains suppress RNA silencing primarily by competitively binding small RNAs (sRNAs) in the host cell cytoplasm. Interestingly, 2b proteins encoded by CMV subgroup II strains accumulate predominantly in nuclei. Here we determined that whereas the 2b protein (Fny2b) of subgroup IA strain Fny-CMV is highly effective in suppressing both sense RNA-induced and inverted repeat-induced posttranscriptional gene silencing, the 2b protein (LS2b) of the subgroup II strain LS-CMV was not as effective. Reducing nuclear accumulation of LS2b by mutating a residue in its nuclear localization sequence had no effect on RNA silencing suppressor activity, while attenuated viral symptoms. Electrophoretic mobility shift assays showed that the sRNA binding of LS2b was weaker and more selective than that of Fny2b. The domain determining the differential sRNA-binding ability was delimited to the putative helix α1 region. Moreover, LS2b mutants that completely lost suppressor activity still retained their weak sRNA-binding ability, suggesting that sRNA binding is not sufficient for LS2b to suppress RNA silencing. Considering the subgroup I strain-encoded 2b proteins that require sRNA-binding ability for the suppression of RNA silencing, we suggest that in addition to binding sRNA, the 2b proteins of subgroup II CMV strains would require extra biological activities to achieve RNA silencing inhibition.


Sign in / Sign up

Export Citation Format

Share Document