function expression
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 39)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Farong Kou ◽  
Xinqian Zhang ◽  
Jiannan Xu

Steering Angle is related to the design and optimization of steering mechanism and suspension, but it is not equal to the angle of knuckle around kingpin because of the existence of wheel alignment parameters. To calculate the steering angle, this paper derives based on homogeneous transformation its function expression by analyzing spatial geometric relation between the two angles and calculating coordinates related to steering trajectory of wheel center. Then, multi-body model of McPherson suspension with steering system is built and the calculation correctness is verified by comparing the function curve plotted by MATLAB software with the curve simulated by Adams/Car software. The calculation and simulation indicate that between the two angles, there is a ratio which is related to wheel alignment parameters and greater than 1.


2021 ◽  
pp. 38-40
Author(s):  
Vitaly Sorokin

The article describes the forms of objectification of language in law. Language is considered by the author not just as a way of communicating legal information, but as a mediator of the meaning of law. The role of legal definitions in legal operations is characterized. The language correlates with the spheres of the spirit of law and the legal process. Language is an important nation-forming factor. It is not limited to providing communication between subjects using verbal and non-verbal means. In the legal sphere, the word carries the spirit of law, for it is the embodiment of this spirit. Receiving a linguistic expression, the spirit of law is objectified. At the same time, the legal literature presents a limited view on the functions of language in law. As a rule, they include display function(expression of the will of the legislator outside) and communicative one (bringing this will to the attention of participants in public relations). At the same time, the most important functions of language in law are ignored: system-preserving, meaning-forming and spiritual. At the same time, the author warns against the absolutization of linguistic means in law.


Author(s):  
David Knichel ◽  
Pascal Sasdrich ◽  
Amir Moradi

With an increasing number of mobile devices and their high accessibility, protecting the implementation of cryptographic functions in the presence of physical adversaries has become more relevant than ever. Over the last decade, a lion’s share of research in this area has been dedicated to developing countermeasures at an algorithmic level. Here, masking has proven to be a promising approach due to the possibility of formally proving the implementation’s security solely based on its algorithmic description by elegantly modeling the circuit behavior. Theoretically verifying the security of masked circuits becomes more and more challenging with increasing circuit complexity. This motivated the introduction of security notions that enable masking of single gates while still guaranteeing the security when the masked gates are composed. Systematic approaches to generate these masked gates – commonly referred to as gadgets – were restricted to very simple gates like 2-input AND gates. Simply substituting such small gates by a secure gadget usually leads to a large overhead in terms of fresh randomness and additional latency (register stages) being introduced to the design.In this work, we address these problems by presenting a generic framework to construct trivially composable and secure hardware gadgets for arbitrary vectorial Boolean functions, enabling the transformation of much larger sub-circuits into gadgets. In particular, we present a design methodology to generate first-order secure masked gadgets which is well-suited for integration into existing Electronic Design Automation (EDA) tools for automated hardware masking as only the Boolean function expression is required. Furthermore, we practically verify our findings by conducting several case studies and show that our methodology outperforms various other masking schemes in terms of introduced latency or fresh randomness – especially for large circuits.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0256120
Author(s):  
Yue Guo ◽  
Jing Liu ◽  
Xingna Wang ◽  
Ying Li ◽  
Xilin Hou ◽  
...  

It is believed that positive selection is one of the major evolutionary forces underlying organism phenotypic diversification. Nevertheless, the characteristics of positively selected genes (PSGs), have not been well investigated. In this study, we performed a genome-wide analysis of orthologous genes between Brassica rapa (B. rapa) and Brassica oleracea (B. oleracea), and identified 468 putative PSGs. Our data show that, (1) PSGs are enriched in plant hormone signal transduction pathway and the transcription factor family; (2) PSGs are significantly lower expressed than randomly selected non-PSGs; (3) PSGs with tissue specificity are significantly higher expressed in the callus and reproductive tissues (flower and silique) than in vegetable tissues (root, stem and leaf); (4) the proportion of PSGs is positively correlated with the number of retained triplication gene copies, but the expression level of PSGs decay with the increasing of triplication gene copies; (5) the CG and CHG methylation levels of PSGs are significantly higher in introns and UTRs than in the promoter and exon regions; (6) the percent of transposable element is in proportion to the methylation level, and DNA methylation (especially in the CG content) has the tendency to reduce the expression of PSGs. This study provides insights into the characteristics, evolution, function, expression and methylation of PSGs in B. rapa.


2021 ◽  
Vol 22 (19) ◽  
pp. 10656
Author(s):  
Samantha F. Moore ◽  
Ejaife O. Agbani ◽  
Andreas Wersäll ◽  
Alastair W. Poole ◽  
Chris M. Williams ◽  
...  

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β(Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.


2021 ◽  
Vol 22 (16) ◽  
pp. 8597
Author(s):  
Ilka Wilhelmi ◽  
Alexander Neumann ◽  
Markus Jähnert ◽  
Meriem Ouni ◽  
Annette Schürmann

Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.


Author(s):  
Franziska Vierl ◽  
Manpreet Kaur ◽  
Magdalena Götz

In this perspective article, we briefly review tools for stable gain-of-function expression to explore key fate determinants in embryonic brain development. As the piggyBac transposon system has the highest insert size, a seamless integration of the transposed sequence into the host genome, and can be delivered by transfection avoiding viral vectors causing an immune response, we explored its use in the murine developing forebrain. The original piggyBac transposase PBase or the mouse codon-optimized version mPB and the construct to insert, contained in the piggyBac transposon, were introduced by in utero electroporation at embryonic day 13 into radial glia, the neural stem cells, in the developing dorsal telencephalon, and analyzed 3 or 5 days later. When using PBase, we observed an increase in basal progenitor cells, often accompanied by folding aberrations. These effects were considerably ameliorated when using the piggyBac plasmid together with mPB. While size and strength of the electroporated region was not correlated to the aberrations, integration was essential and the positive correlation to the insert size implicates the frequency of transposition as a possible mechanism. We discuss this in light of the increase in transposing endogenous viral vectors during mammalian phylogeny and their role in neurogenesis and radial glial cells. Most importantly, we aim to alert the users of this system to the phenotypes caused by non-codon optimized PBase application in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yujuan Li ◽  
Lili Huang ◽  
Javed Iqbal ◽  
Yulin Deng

P-glycoprotein (P-gp) could maintain stability of the nerve system by effluxing toxins out of the blood-brain barrier. Whether it plays a very important role in drug brain distribution during space travel is not yet known. The present study was aimed at investigating P-gp function, expression, and its interacting proteins in a rat brain under simulated microgravity (SMG) by comparative proteomics approach. Rats were tail-suspended to induce short- (7-day) and long-term (21-day) microgravity. P-gp function was assessed by measuring the P-gp ATPase activity and the brain-to-plasma concentration ratio of rhodamine 123. P-gp expression was evaluated by Western blot. 21d-SMG significantly enhanced P-gp efflux activity and expression in rats. Label-free proteomics strategy identified 26 common differentially expressed proteins (DEPs) interacting with P-gp in 7d- and 21d-SMG groups. Most of the DEPs mainly regulated ATP hydrolysis coupled transmembrane transport and so on. Interaction analysis showed that P-gp might potentially interact with heat shock proteins, sodium/potassium ATP enzyme, ATP synthase, microtubule-associated proteins, and vesicle fusion ATPase. The present study firstly reported P-gp function, expression, and its potentially interacting proteins exposed to simulated microgravity. These findings might be helpful not only for further study on nerve system stability but also for the safe and effective use of P-gp substrate drugs during space travel.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jing-jing Liu ◽  
Tie-lin Chen ◽  
Chang-ling Xie ◽  
Jian-hua Tian ◽  
Yu-xin Wei

The collapse mechanism of a circular unlined tunnel roof subjected to the pore water pressure under plane strain conditions is investigated in this article. First, the model of calculating the function expression of the detaching surface for the collapsing block is formed in the framework of the upper bound theorem of limit analysis and the extremum principle. The analytical solution of the pore water pressure around the tunnel in a two-dimensional steady seepage field is employed in the equations of the model. Then, the numerical approach based on the Runge–Kutta algorithm and traversal search method is proposed to solve the complex equations. The obtained expression of the detaching surface for the collapsing block provides the shape of the collapsing block and a theoretical basis for designing the support force for tunnels. The proposed limit analysis method and numerical approach are verified by comparing with existing theoretical solutions and the numerical simulation result, and they are suitable for deep, shallow tunnels and layered strata. Moreover, the effects of different parameters on the collapse mechanism are investigated, and qualitative results are provided.


Sign in / Sign up

Export Citation Format

Share Document