scholarly journals Effects of the electrical stimulation of the mammary nerve on oxytocin and luteinizing hormone secretion in anesthetized rats.

1988 ◽  
Vol 34 (3) ◽  
pp. 153-158
Author(s):  
Kei-ichiro MAEDA ◽  
Naganari OHKURA ◽  
Emi UCHIDA ◽  
Hiroko TSUKAMURA ◽  
Akira YOKOYAMA
1978 ◽  
Vol 78 (1) ◽  
pp. 151-152 ◽  
Author(s):  
R. G. DYER ◽  
M. B. TER HAAR ◽  
LINDA C. MAYES

A.R.C. Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT (Received 17 January 1978) For over 30 years, the method by which the brain regulates the secretion of gonadotrophic hormones has been studied by electrical stimulation of those parts of the central nervous system thought to be implicated in the control process. Much of the work has been performed on the female rat. In this species, anaesthetic doses of sodium pentobarbitone, administered immediately before the pro-oestrous 'critical period', block the preovulatory surge of luteinizing hormone (LH) for 24 h. The same treatment also reduces the early phase of the pro-oestrous secretion of follicle-stimulating hormone (FSH; Daane & Parlow, 1971). Electrical stimulation of the preoptic part of the hypothalamus can overcome this blocking effect and analysis of the optimum parameters required to restore normal secretion of gonadotrophins may give some insight into the endogenous process (e.g. Everett, 1965; Fink & Aiyer, 1974;


1975 ◽  
Vol 67 (3) ◽  
pp. 431-438 ◽  
Author(s):  
D. T. DAVIES ◽  
B. K. FOLLETT

SUMMARY Experiments were undertaken to localize those hypothalamic areas in the male quail (Coturnix coturnix japonica) where electrical stimulation would increase LH secretion. The posterior basal hypothalamus was stimulated with rectangular pulses (height 500 μA) through a bipolar electrode for 6 min, blood samples being taken for LH assay 20 min before, and 2, 10, 20 and 30 min after stimulation. The highest plasma concentration was observed in the 2 min sample. Over the next 30 min the LH level decreased to the resting concentration. The relative increase in LH level was greatest in sexually immature quail and least in photostimulated castrated birds, although the highest absolute levels were seen in the castrated quail. There were no statistical differences between the magnitude of the LH increases in sexually immature, mature and castrated quail. Various hypothalamic regions were then stimulated with a smaller current (200 μA) applied for only 2 min. A highly significant rise in LH followed stimulation of either the tuberal hypothalamus (postero-dorsal part of the infundibular nuclear complex, PD-INC), or the preoptic region (POR) while stimulation 0·5–1·5 mm away from these regions did not change LH secretion. Stimulation of the anterior basal hypothalamus, or of the suprachiasmatic area, caused a significant rise in LH concentration although this was less than that seen after stimulation of the POR. Stimulation in the POR or the PD-INC was ineffective if the tuberal hypothalamus had been deafferentated surgically some days previously. The data complement the studies in which destruction of the PD-INC or the POR by electrolytic lesions has been shown to block photoperiodically induced testicular growth and LH secretion.


Sign in / Sign up

Export Citation Format

Share Document