electrolytic lesions
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 3)

H-INDEX

41
(FIVE YEARS 1)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zheng Chu ◽  
Wei Han ◽  
Peng Liu ◽  
Fei Liu ◽  
Gang Lei ◽  
...  

Abstract Background Previous studies have revealed that ventrolateral orbital cortex (VLO) may play an important role in the regulation of emotional behavior. However, it is not known what effect VLO damage will have on emotion regulation. Results Data showed that damage of VLO increased the anxiety-like behavior in open field test and elevated plus maze, and decreased the depressive behavior in forced swimming test and learned helplessness test. Besides, the impulsive aggressive behaviors were also increased while the attack latency decreased after VLO lesion. What’s more, damage of VLO decreased depressive behaviors induced by chronic unpredicted mild stress in rats. Conclusions These results suggest that the integrity of VLO plays an important role in emotional regulation, and the damage of VLO may inhibit the development of depression-like behavior.


Author(s):  
Benjamin J. Bell ◽  
Annette A. Wang ◽  
Dong Won Kim ◽  
Seth Blackshaw ◽  
Mark N. Wu

AbstractStructure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and found that its role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake+ cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWake+ cells in the rhythmic control of diverse behaviors and physiological processes.


2019 ◽  
Vol 35 (1) ◽  
pp. 45-57
Author(s):  
Andrew J. Gall ◽  
Alyssa M. Goodwin ◽  
Ohanes S. Khacherian ◽  
Laura B. Teal

The circadian system regulates daily rhythms of physiology and behavior. Although extraordinary advances have been made to elucidate the brain mechanisms underlying the circadian system in nocturnal species, less is known in diurnal species. Recent studies have shown that retinorecipient brain areas such as the intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPT) are critical for the display of normal patterns of daily activity in diurnal grass rats ( Arvicanthis niloticus). Specifically, grass rats with IGL and OPT lesions respond to light in similar ways to intact nocturnal animals. Importantly, both the IGL and OPT project to one another in nocturnal species, and there is evidence that these 2 brain regions also project to the superior colliculus (SC). The SC receives direct retinal input, is involved in the triggering of rapid eye movement sleep in nocturnal rats, and is disproportionately large in the diurnal grass rat. The objective of the current study was to use diurnal grass rats to test the hypothesis that the SC is critical for the expression of diurnal behavior and physiology. We performed bilateral electrolytic lesions of the SC in female grass rats to examine behavioral patterns and acute responses to light. Most grass rats with SC lesions expressed significantly reduced activity in the presence of light. Exposing these grass rats to constant darkness reinstated activity levels during the subjective day, suggesting that light masks their ability to display a diurnal activity profile in 12:12 LD. Altogether, our data suggest that the SC is critical for maintaining normal responses to light in female grass rats.


2017 ◽  
Vol 38 (9) ◽  
pp. 1617-1628 ◽  
Author(s):  
Meichan Zhu ◽  
Heng Li ◽  
Bibek Gyanwali ◽  
Guangyao He ◽  
Chenglin Qi ◽  
...  

2015 ◽  
pp. 755-767
Author(s):  
M. G. DASHNIANI ◽  
M. A. BURJANADZE ◽  
T. L. NANEISHVILI ◽  
N. C. CHKHIKVISHVILI ◽  
G. V. BESELIA ◽  
...  

In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic – ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin – 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory – the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field – the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Marc Fakhoury ◽  
Sergio Domínguez López

Located centrally along the dorsal diencephalic system, the habenula is divided into two structures: the medial and the lateral portions. It serves as an important relay between the forebrain and several hindbrain sites. In the last few years, a huge attention has been devoted to this structure, especially the lateral habenula (LHb), which seems to play an important role in emotion, motivation, and reward. Recent studies using techniques such as electrophysiology and neuroimaging have shown that the LHb is involved in motivational control of behavior. Its dysfunction is often associated with depression, schizophrenia, and mood disorder. This review focuses on providing a neuroanatomical and behavioral overview of some of the research previously done on the LHb. First, we describe the anatomical structure of the habenula and we explain how it is involved in reward and motivation. Then, we will discuss how this structure is linked to the limbic system, to finally provide a comparison between several studies that have used electrolytic lesions.


2014 ◽  
Vol 306 (3) ◽  
pp. R190-R200 ◽  
Author(s):  
Samantha Dayawansa ◽  
Stacey Ruch ◽  
Ralph Norgren

Rats with bilateral excitotoxic lesions of the parabrachial nuclei (PBN) fail to acquire a conditioned taste aversion (CTA), yet they retain the ability to express a CTA learned prior to incurring the damage. Rats with bilateral electrolytic lesions of the lateral hypothalamus (LH) also have CTA learning deficits. The PBN have reciprocal neural connections with the LH. This suggests that these CTA deficits may be functionally related. Electrolytic lesions damage fibers of passage, as well as intrinsic neurons. Thus, these LH lesions might also interrupt reciprocal connections between the PBN and other ventral forebrain areas, such as the amygdala and bed nucleus of the stria terminalis. To distinguish the source of the LH-lesion deficit, we tested for CTA first after bilateral excitotoxic lesions of LH and subsequently with a second set of animals that had asymmetric excitotoxic PBN and LH lesions. The rats with bilateral excitotoxic LH lesions showed deficits when acquiring a postlesion CTA. The asymmetrical PBN-LH lesions not only slowed acquisition of a CTA but also sped up extinction. This implies that interaction between the two structures, at minimum, facilitates CTA learning and may have a role in its consolidation.


Sign in / Sign up

Export Citation Format

Share Document