Relativity Principle of Gravitational Field Propagation of Moving Objects

2021 ◽  
Vol 11 (03) ◽  
pp. 29-40
Author(s):  
建勋 肖
Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This chapter shows how Einstein has developed and described the mathematical apparatus that is necessary to formulate the physical contents of the general theory of gravity. It first discusses the transition from the special to the general relativity principle. According to Einstein's understanding of such a general relativity principle, physical laws are independent of the state of motion of the reference space in which they are described. The chapter argues that such a generalization of the relativity principle to include accelerated reference frames is possible because all inertial effects caused by acceleration can be alternatively attributed to the presence of a gravitational field. The model of a rotating disk is then used to show that general relativity implies non-Euclidean geometry and that the gravitational field is represented by curved spacetime. After the introduction of these basic concepts and principles, the chapter presents the mathematical formulation of the theory.


2002 ◽  
Vol 17 (20) ◽  
pp. 2771-2771
Author(s):  
V. PRAVDA ◽  
A. PRAVDOVÁ

Boost-rotation symmetric spacetimes are the only axially symmetric vacuum spacetimes with an additional symmetry that are radiative and admit global null infinity1,2. They are the only radiative asymptotically flat exact solutions representing the gravitational field of moving objects – uniformly accelerated "particles" of various kinds3. The general theory of boost-rotation symmetric spacetimes was first developed for nonspinning sources4 (i.e. for hypersurface orthogonal Killing vectors) and later partially generalized for spinning sources5. The C-metric3 and the spinning C-metric6,7,8 belonging to this class were analyzed. With appropriately chosen parameters they represent the gravitational field of uniformly accelerated Schwarzschild and Kerr black or white holes. Stability of geodesics describing co-accelerated particles was also studied using an effective potential9 and a Lyapunov function8.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1984 ◽  
Vol 75 ◽  
pp. 361-362
Author(s):  
André Brahic

AbstractThe dynamical evolution of planetary discs in the gravitational field of an oblate planet and a satellite is numerically simulated.


2009 ◽  
Author(s):  
Piers D. Howe ◽  
Michael A. Cohen ◽  
Yair Pinto ◽  
Todd S. Horowitz
Keyword(s):  

2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-109-Pr5-112
Author(s):  
J.-F. Dufrêche ◽  
J.-P. Simonin ◽  
P. Turq

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


1971 ◽  
Vol 105 (12) ◽  
pp. 780-781 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Lev P. Pitaevskii ◽  
Valentin S. Popov ◽  
Aleksei A. Starobinskii

Sign in / Sign up

Export Citation Format

Share Document