Free Vibration Analysis of Functional Gradient Mindlin Plate of Arbitrary Shape

2019 ◽  
Vol 07 (01) ◽  
pp. 28-40
Author(s):  
云艳 玉
2011 ◽  
Vol 18 (11) ◽  
pp. 1722-1736 ◽  
Author(s):  
Ma’en S Sari ◽  
Eric A Butcher

The objective of this paper is the development of a new numerical technique for the free vibration analysis of isotropic rectangular and annular Mindlin plates with damaged boundaries. For this purpose, the Chebyshev collocation method is applied to obtain the natural frequencies of Mindlin plates with damaged clamped boundary conditions, where the governing equations and boundary conditions are discretized by the presented method and put into matrix vector form. The damaged boundaries are represented by distributed translational and torsional springs. In the present study the boundary conditions are coupled with the governing equation to obtain the eigenvalue problem. Convergence studies are carried out to determine the sufficient number of grid points used. First, the results obtained for the undamaged plates are verified with previous results in the literature. Subsequently, the results obtained for the damaged Mindlin plate indicate the behavior of the natural vibration frequencies with respect to the severity of the damaged boundary. This analysis can lead to an efficient technique for structural health monitoring of structures in which joint or boundary damage plays a significant role in the dynamic characteristics. The results obtained from the Chebychev collocation solutions are seen to be in excellent agreement with those presented in the literature.


1999 ◽  
Vol 121 (2) ◽  
pp. 204-208 ◽  
Author(s):  
F.-L. Liu ◽  
K. M. Liew

A new numerical technique, the differential quadrature element method (DQEM), has been developed for solving the free vibration of the discontinuous Mindlin plate in this paper. By the DQEM, the complex plate domain is decomposed into small simple continuous subdomains (elements) and the differential quadrature method (DQM) is applied to each continuous subdomain to solve the problems. The detailed formulations for the DQEM and the connection conditions between each element are presented. Several numerical examples are analyzed to demonstrate the accuracy and applicability of this new method to the free vibration analysis of the Mindlin plate with various discontinuities which are not solvable directly using the differential quadrature method.


2017 ◽  
Vol 14 (02) ◽  
pp. 1750011 ◽  
Author(s):  
T. Nguyen-Thoi ◽  
T. Rabczuk ◽  
V. Ho-Huu ◽  
L. Le-Anh ◽  
H. Dang-Trung ◽  
...  

A cell-based smoothed three-node Mindlin plate element (CS-MIN3) was recently proposed and proven to be robust for static and free vibration analyses of Mindlin plates. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, it is very flexible to apply for arbitrary complicated geometric domains due to using only three-node triangular elements which can be easily generated automatically. However so far, the CS-MIN3 has been only developed for isotropic material and for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-MIN3 by integrating itself with functionally graded material (FGM) and enriched functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed three-node Mindlin plate (XCS-MIN3) for free vibration analysis of cracked FGM plates. Three numerical examples with different conditions are solved and compared with previous published results to illustrate the accuracy and reliability of the XCS-MIN3 for free vibration analysis of cracked FGM plates.


2011 ◽  
Vol 110-116 ◽  
pp. 350-356
Author(s):  
S.H. Hosseini Hashemi ◽  
S. Fazeli

In this paper the free vibration analysis of a fiber reinforced mindlin plate is presented.energy method based on the ritz method is used to obtain natural frequencies of the plate. Displacement fields of the plate are postulated by trigonometric series function. depending on the arrangement and orientation of the fibers, mindlin plate is assumed to be orthotropic or monoclinic.this analysis is useful to study the mechanical behavior of an angle ply lamina and effect of fiber orientation on the frequency response of the plate.the analysis can be extended for the laminates where the analytical solutions are not available. Finally the results are compared with those reported in the literature.


2011 ◽  
Vol 368-373 ◽  
pp. 1332-1337
Author(s):  
Hong Yang Xie ◽  
Huan Yang ◽  
Jin Quan Yin

Based on two-parameter foundation model and Mindlin plate theory, the FEM equation for free vibration analysis of elastic plates resting on elastic foundation is derived by Hamilton variation principle. The effect of foundation beneath the plate is combined in the stiffness matrix of the plate element, and the effect of the foundation outside the plate domain is taken into account by boundary element method. By coupling FEM and BEM, numerical analyses for the free vibration of foundation plates are carried out. Calculated frequencies are in good agreement with measured results, which proves the accuracy and efficiency of the present approach.


2009 ◽  
Vol 16 (5) ◽  
pp. 439-454 ◽  
Author(s):  
Korhan Ozgan ◽  
Ayse T. Daloglu

The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.


Sign in / Sign up

Export Citation Format

Share Document