mindlin plate theory
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 3)

2020 ◽  
Vol 41 (12) ◽  
pp. 1769-1786
Author(s):  
Wenjie Feng ◽  
Zhen Yan ◽  
Ji Lin ◽  
C. Z. Zhang

AbstractBased on the nonlocal theory and Mindlin plate theory, the governing equations (i.e., a system of partial differential equations (PDEs) for bending problem) of magnetoelectroelastic (MEE) nanoplates resting on the Pasternak elastic foundation are first derived by the variational principle. The polynomial particular solutions corresponding to the established model are then obtained and further employed as basis functions with the method of particular solutions (MPS) to solve the governing equations numerically. It is confirmed that for the present bending model, the new solution strategy possesses more general applicability and superior flexibility in the selection of collocation points. Finally, the effects of different boundary conditions, applied loads, and geometrical shapes on the bending properties of MEE nanoplates are evaluated by using the developed method. Some important conclusions are drawn, which should be helpful for the design and applications of electromagnetic nanoplate structures.


Author(s):  
Sudersan Sridhar ◽  
Arockiarajan Arunachalakasi

Abstract Magnetoelectric (ME) composites are viable candidates for use in numerous applications owing to their multifunctional capabilities. These composites develop voltages across the piezo-electric phase under external magnetic fields. Numerous models available in literature consider the magnetostriction under pure magnetic loading. However, fabrication of ME composites results in development of compressive stresses on the magnetostrictive layer, which leads to a poor ME response and hence an initial effective tensile prestress to the magnetostrictive phase is required to either compensate or enhance the ME coupling. In this work, the ME response of an unsymmetric laminate is predicted using a finite element procedure based on Mindlin plate theory, giving due consideration the magnetostrictive nonlinearity, the direction of the applied field and the effect of the stress state on the magnetostrictive response. The model predicts that initial shear stresses, positive or negative, provide the best enhancement to the ME coupling.


2020 ◽  
Vol 865 ◽  
pp. 67-71
Author(s):  
Shi Rong Li ◽  
Peng Xiong ◽  
Da Fu Cao

In this paper, thermoelastic damping (TED) in a simply supported rectangular functionally graded material (FGM) micro plate with continuous variation of the material properties along the thickness direction is performed. The equations of motion and the heat conduction equation coupled with the thermal effects are derived based on the Mindlin plate theory and the one-way coupled heat conduction theory, respectively. The heat conduction equation with variable coefficients is solved by using the layer-wise homogenization approach. Analytical solution of TED is obtained by complex frequency method. Numerical results of TED are presented for the rectangular FGM micro plate made of ceramic-metal constituents with the power-law gradient profile. The effects of the shear deformation, the material gradient index, the plate thickness on the TED of the FGM micro plate are studied.


2020 ◽  
Vol 90 (5) ◽  
pp. 1025-1038
Author(s):  
Hui Chen ◽  
Rongxing Wu ◽  
Longtao Xie ◽  
Jianke Du ◽  
Lijun Yi ◽  
...  

Author(s):  
K. M. Praveen ◽  
D. Karmakar ◽  
C. Guedes Soares

In the present study, the wave interaction with the very large floating structures (VLFSs) is analyzed considering the small amplitude wave theory. The VLFS is modeled as a 2D floating elastic plate with infinite width based on Timoshenko–Mindlin plate theory. The eigenfunction expansion method along with mode-coupling relation is used to analyze the hydroelastic behavior of VLFSs in finite water depth. The contour plots for the plate covered dispersion relation are presented to illustrate the complexity in the roots of the dispersion relation. The wave scattering behavior in the form of reflection and transmission coefficients are studied in detail. The hydroelastic performance of the elastic plate interacting with the ocean wave is analyzed for deflection, strain, bending moment, and shear force along the elastic plate. Further, the study is extended for shallow water approximation, and the results are compared for both Timoshenko–Mindlin plate theory and Kirchhoff’s plate theory. The significance and importance of rotary inertia and shear deformation in analyzing the hydroelastic characteristics of VLFSs are presented. The study will be helpful for scientists and engineers in the design and analysis of the VLFSs.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840003 ◽  
Author(s):  
C. F. Du ◽  
D. G. Zhang ◽  
G. R. Liu

A cell-based smoothed finite element method (CS-FEM) is formulated for nonlinear free vibration analysis of a plate attached to a rigid rotating hub. The first-order shear deformation theory which is known as Mindlin plate theory is used to model the plate. In the process of formulating the system stiffness matrix, the discrete shear gap (DSG) method is used to construct the strains to overcome the shear locking issue. The effectiveness of the CS-FEM is first demonstrated in some static cases and then extended for free vibration analysis of a rotating plate considering the nonlinear effects arising from the coupling of vibration of the flexible structure with the undergoing large rotational motions. The nonlinear coupling dynamic equations of the system are derived via employing Lagrange’s equations of the second kind. The effects of different parameters including thickness ratio, aspect ratio, hub radius ratio and rotation speed on dimensionless natural frequencies are investigated. The dimensionless natural frequencies of CS-FEM are compared with those other existing method including the FEM and the assumed modes method (AMM). It is found that the CS-FEM based on Mindlin plate theory provides more accurate and “softer” solution compared with those of other methods even if using coarse meshes. In addition, the frequency loci veering phenomena associated with the mode shape interaction are examined in detail.


Sign in / Sign up

Export Citation Format

Share Document