A Comparative Study of Two Difference Schemes for Hyperbolic Equations

2021 ◽  
Vol 11 (02) ◽  
pp. 261-270
Author(s):  
欣童 杨
2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Necmettin Aggez

The stable difference schemes for the approximate solution of the nonlocal boundary value problem for multidimensional hyperbolic equations with dependent in space variable coefficients are presented. Stability of these difference schemes and of the first- and second-order difference derivatives is obtained. The theoretical statements for the solution of these difference schemes for one-dimensional hyperbolic equations are supported by numerical examples.


2006 ◽  
Vol 6 (3) ◽  
pp. 269-290 ◽  
Author(s):  
B. S. Jovanović ◽  
S. V. Lemeshevsky ◽  
P. P. Matus ◽  
P. N. Vabishchevich

Abstract Estimates of stability in the sense perturbation of the operator for solving first- and second-order differential-operator equations have been obtained. For two- and three-level operator-difference schemes with weights similar estimates hold. Using the results obtained, we construct estimates of the coefficient stability for onedimensional parabolic and hyperbolic equations as well as for the difference schemes approximating the corresponding differential problems.


Sign in / Sign up

Export Citation Format

Share Document