scholarly journals Unsteady discrete adjoint method formulated in the time - domain for shape optimization in turbomachinery

2018 ◽  
Author(s):  
Γεώργιος Ντανάκας

Η διδακτορική διατριβή πραγματεύεται τη μαθηματική διατύπωση, επίλυση, προγραμματισμό και πιστοποίηση της μη-μόνιμης διακριτής συζυγούς μεθόδου με διατύπωση στο πεδίο του χρόνου για τον υπολογισμό πρώτης τάξης παραγώγων αντικειμενικών συναρτήσεων ως προς τις μεταβλητές σχεδιασμού σε προβλήματα αεροδυναμικής και τη χρήση τους σε αλγορίθμους βελτιστοποίησης. Η μέθοδος εφαρμόζεται για την υπο περιορισμούς βελτιστοποίηση σχήματος τριδιάστατων, πολυβάθμιων διατάξεων στροβιλομηχανών σε μεταβατικές και περιοδικές ροές.Οι μη-μόνιμες συζυγείς εξισώσεις διατυπώνονται για αντικειμενική συνάρτηση που έχει τη μορφή ολοκληρώματος σε επιλεγμένο χρονικό διάστημα. Για την επίλυση των μη-μόνιμων εξισώσεων χρησιμοποιείται η τεχνική του διπλού χρονικού βήματος καθώς και ένα επαναληπτικό σχήμα, το οποίο είναι συζυγές της μεθόδου Runge-Kutta 5 βηµάτων, η οποία επιστρατεύεται για τη σύγκλιση των εξισώσεων ροής, και προκύπτει από διαφόριση "με το χέρι". Το σχήμα διατυπώνεται έτσι ώστε να διασφαλίσει σύγκλιση ίδιου ρυθμού με αυτόν του μη-μόνιμου Reynolds-Averaged Navier-Stokes επιλύτη.Για τον υπολογισμό επιλεγμένων διαφορικών όρων των συζυγών εξισώσεων χρησιμοποιείται η τεχνική της Αυτόματης Διαφόρισης (ΑΔ). Η χρήση της περιορίζεται σε προγραμματιστικές διαδικασίες "χαμηλού επιπέδου" και συνδυάζεται με τη διαφόριση "με το χέρι" με στόχο την υψηλή απόδοση του συζυγούς επιλύτη.Για τη σύζευξη διαδοχικών πτερυγώσεων χρησιμοποιείται η μέθοδος της διεπιφάνειας ολίσθησης στον συζυγή επιλύτη, αντικαθιστώντας τη μέθοδο της διεπιφάνειας ανάμιξης που εμφανίζεται στους μόνιμους υπολογισμούς. Ως αφετηρία λαμβάνεται η εφαρμογή της τεχνικής στο μη-μόνιμο επιλύτη ροής όπου τα πλέγματα διαδοχικών πτερυγώσεων έχουν επικάλυψη ενός κελιού μεταξύ τους. Για να διατηρηθεί η αντίστροφη ροή πληροφορίας στο συζυγή επιλύτη, η ΑΔ συνδυάζεται με προγραμματισμό "με το χέρι" για την υλοποίηση της μεθόδου.Ο επιλύτης χρησιμοποιεί χώρο σε SSD δίσκους αντί της μνήμης RAM για την αποθήκευση και την ανάκτηση των πεδίων ροής ανά χρονικό βήμα κατά την εκτέλεσή του. Έτσι, αποφεύγονται οι περιορισμοί της κατ' αναλογία μικρής σε χωρητικότητα μνήμης RAM χωρίς σημαντική χρονική επιβάρυνση. Η επιπλέον μείωση του χρόνου εκτέλεσης και του απαιτούμενου αποθηκευτικού χώρου πραγματοποιείται με την εφαρμογή της μεθόδου χρονικής αραίωσης.Οι παράγωγοι υπολογίζονται με τη συζυγή μέθοδο με στόχο τη χρήση τους σε κύκλο βελτιστοποίησης. Στην περίπτωση ύπαρξης περιορισμών ισότητας, η συνιστώσα της παραγώγου της αντικειμενικής συνάρτησης ως προς τις παραγώγους των περιορισμών υπολογίζεται και χρησιμοποιείται με τη μέθοδο της καθόδου κατά την προβεβλημένη παράγωγο για την ανανέωση των μεταβλητών σχεδιασμού και, άρα, της γεωμετρίας. Αν δεν υπάρχουν περιορισμοί, χρησιμοποιείται η μέθοδος της απότομης καθόδου.Το αναπτυχθέν λογισμικό εφαρμόζεται για τη βελτιστοποίηση σχήματος πτερυγίων τριδιάστατων, πολυβάθμιων διατάξεων στροβιλομηχανών για πρώτη φορά στη βιβλιογραφία. Οι περιπτώσεις εφαρμογής περιλαμβάνουν μία σταθερή πτερύγωση στροβίλου (μεταβατική ροή), μια βαθμίθα στροβίλου (περιοδική ροή) και μια διάταξη συμπιεστή 1,5 βαθμίδας (περιοδική ροή). Οι υπολογιζόμενες παράγωγοι μέσω της συζυγούς μεθόδου πιστοποιούνται συγκρίνοντας τις με τις παραγώγους που προκύπτουν από τη χρήση πεπερασμένων διαφορών και, στη συνέχεια, χρησιμοποιούνται σε σενάρια βελτιστοποίησης με και χωρίς περιορισμούς.Η διδακτορική διατριβή εκπονήθηκε στο πλαίσιο του ITN AboutFlow το οποίο χρηματοδοτήθηκε από το Seventh Framework Programme της Ευρωπαϊκής Ένωσης με τη Συμφωνία Επιχορήγησης Νο. 317006.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Georgios Ntanakas ◽  
Marcus Meyer ◽  
Kyriakos C. Giannakoglou

In turbomachinery, the steady adjoint method has been successfully used for the computation of derivatives of various objective functions with respect to design variables in gradient-based optimization. However, the continuous advances in computing power and the accuracy limitations of the steady-state assumption lead toward the transition to unsteady computational fluid dynamics (CFD) computations in the industrial design process. Previous work on unsteady adjoint for turbomachinery applications almost exclusively rely upon frequency-domain methods, for both the flow and adjoint equations. In contrast, in this paper, the development the discrete adjoint to the unsteady Reynolds-averaged Navier–Stokes (URANS) solver for three-dimensional (3D) multirow applications, in the time-domain, is presented. The adjoint equations are derived along with the adjoint to the five-stage Runge–Kutta scheme. Communication between adjacent rows is achieved by the adjoint sliding interface method. An optimization workflow that uses unsteady flow and adjoint solvers is presented and tested in two cases, with objective functions accounting for the transient flow in a turbine vane and the periodic flow in a compressor three-row setup.


2020 ◽  
Vol 158 ◽  
pp. 106542 ◽  
Author(s):  
Aziz Madrane ◽  
Haichao An ◽  
Jiazhen Leng ◽  
Megan Schaenzer ◽  
Minh Quan Pham ◽  
...  

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
M. Pini ◽  
L. Azzini ◽  
S. Vitale ◽  
P. Colonna

Abstract This paper presents a fully turbulent two-phase discrete adjoint method for metastable condensing flows targeted to turbomachinery applications. The method is based on a duality preserving algorithm and implemented in the open-source CFD tool SU2. The optimization framework is applied to the shape optimization of two canonical steam turbine cascades, commonly referred to as White cascade and Dykas cascade. The optimization were carried out by minimizing either the liquid volume fraction downstream of the cascade or the total entropy generation due viscous effects and heat transfer. In the first case, the amount of condensate turned out to be reduced by as much as 24%, but without reduction of the generated entropy, while the opposite resulted in the second case. The outcomes demonstrate the capability and computational efficiency of adjoint-based automated design for the shape optimization of turbomachinery operating with phase change flow.


Sign in / Sign up

Export Citation Format

Share Document