scholarly journals BCO App: tools for generating BioCompute Objects from next-generation sequencing workflows and computations

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1144
Author(s):  
Nan Xiao ◽  
Soner Koc ◽  
David Roberson ◽  
Phillip Brooks ◽  
Manisha Ray ◽  
...  

The BioCompute Object (BCO) standard is an IEEE standard (IEEE 2791-2020) designed to facilitate the communication of next-generation sequencing data analysis with applications across academia, government agencies, and industry. For example, the Food and Drug Administration (FDA) supports the standard for regulatory submissions and includes the standard in their Data Standards Catalog for the submission of HTS data. We created the BCO App to facilitate BCO generation in a range of computational environments and, in part, to participate in the Advanced Track of the precisionFDA BioCompute Object App-a-thon. The application facilitates the generation of BCOs from both workflow metadata provided as plaintext and from workflow contents written in the Common Workflow Language. The application can also access and ingest task execution results from the Cancer Genomics Cloud (CGC), an NCI funded computational platform. Creating a BCO from a CGC task significantly reduces the time required to generate a BCO on the CGC by auto-populating workflow information fields from CGC workflow and task execution results. The BCO App supports exporting BCOs as JSON or PDF files and publishing BCOs to both the CGC platform and to GitHub repositories.

2019 ◽  
Author(s):  
Tingting Gong ◽  
Vanessa M Hayes ◽  
Eva KF Chan

AbstractSomatic structural variants (SVs) play a significant role in cancer development and evolution, but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS, and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of eight commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the eight SV callers examined in this paper. As the importance of large structural variants become increasingly recognised in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection and guidance on selecting an appropriate SV caller.


Author(s):  
Tingting Gong ◽  
Vanessa M Hayes ◽  
Eva K F Chan

Abstract Somatic structural variants (SVs), which are variants that typically impact >50 nucleotides, play a significant role in cancer development and evolution but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of seven commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the seven SV callers examined in this paper. As the importance of large SVs become increasingly recognized in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection that should be considered when choosing SV callers.


2018 ◽  
Vol 35 (14) ◽  
pp. 2521-2522 ◽  
Author(s):  
Zheng Kuang ◽  
Ying Wang ◽  
Lei Li ◽  
Xiaozeng Yang

Abstract Motivation Two major challenges arise when employing next-generation sequencing methods to comprehensively identify microRNAs (miRNAs) in plants: (i) how to minimize the false-positive inheritable to computational predictions and (ii) how to minimize the computational time required for analyzing the miRNA transcriptome in plants with complex and large genomes. Results We updated miRDeep-P to miRDeep-P2 (miRDP2) by employing a new filtering strategy and overhauling the algorithm. miRDP2 has been tested against miRNA transcriptomes in plants with increasing genome sizes that included Arabidopsis, rice, tomato, maize and wheat. Compared with miRDeep-P and several other computational tools, miRDP2 processes next-generation sequencing data with superior speed. By incorporating newly updated plant miRNA annotation criteria and developing a new scoring system, the accuracy of miRDP2 outperformed other programs. Taken together, our results demonstrate miRDP2 as a fast and accurate tool for analyzing the miRNA transcriptome in plants. Availability and implementation The miRDP2 are freely available from https://sourceforge.net/projects/mirdp2/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document