miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants

2018 ◽  
Vol 35 (14) ◽  
pp. 2521-2522 ◽  
Author(s):  
Zheng Kuang ◽  
Ying Wang ◽  
Lei Li ◽  
Xiaozeng Yang

Abstract Motivation Two major challenges arise when employing next-generation sequencing methods to comprehensively identify microRNAs (miRNAs) in plants: (i) how to minimize the false-positive inheritable to computational predictions and (ii) how to minimize the computational time required for analyzing the miRNA transcriptome in plants with complex and large genomes. Results We updated miRDeep-P to miRDeep-P2 (miRDP2) by employing a new filtering strategy and overhauling the algorithm. miRDP2 has been tested against miRNA transcriptomes in plants with increasing genome sizes that included Arabidopsis, rice, tomato, maize and wheat. Compared with miRDeep-P and several other computational tools, miRDP2 processes next-generation sequencing data with superior speed. By incorporating newly updated plant miRNA annotation criteria and developing a new scoring system, the accuracy of miRDP2 outperformed other programs. Taken together, our results demonstrate miRDP2 as a fast and accurate tool for analyzing the miRNA transcriptome in plants. Availability and implementation The miRDP2 are freely available from https://sourceforge.net/projects/mirdp2/. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Zeynep Baskurt ◽  
Scott Mastromatteo ◽  
Jiafen Gong ◽  
Richard F Wintle ◽  
Stephen W Scherer ◽  
...  

Abstract Integration of next generation sequencing data (NGS) across different research studies can improve the power of genetic association testing by increasing sample size and can obviate the need for sequencing controls. If differential genotype uncertainty across studies is not accounted for, combining data sets can produce spurious association results. We developed the Variant Integration Kit for NGS (VikNGS), a fast cross-platform software package, to enable aggregation of several data sets for rare and common variant genetic association analysis of quantitative and binary traits with covariate adjustment. VikNGS also includes a graphical user interface, power simulation functionality and data visualization tools. Availability The VikNGS package can be downloaded at http://www.tcag.ca/tools/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Tamsen Dunn ◽  
Gwenn Berry ◽  
Dorothea Emig-Agius ◽  
Yu Jiang ◽  
Serena Lei ◽  
...  

AbstractMotivationNext-Generation Sequencing (NGS) technology is transitioning quickly from research labs to clinical settings. The diagnosis and treatment selection for many acquired and autosomal conditions necessitate a method for accurately detecting somatic and germline variants, suitable for the clinic.ResultsWe have developed Pisces, a rapid, versatile and accurate small variant calling suite designed for somatic and germline amplicon sequencing applications. Pisces accuracy is achieved by four distinct modules, the Pisces Read Stitcher, Pisces Variant Caller, the Pisces Variant Quality Recalibrator, and the Pisces Variant Phaser. Each module incorporates a number of novel algorithmic strategies aimed at reducing noise or increasing the likelihood of detecting a true variant.AvailabilityPisces is distributed under an open source license and can be downloaded from https://github.com/Illumina/Pisces. Pisces is available on the BaseSpace™ SequenceHub as part of the TruSeq Amplicon workflow and the Illumina Ampliseq Workflow. Pisces is distributed on Illumina sequencing platforms such as the MiSeq™, and is included in the Praxis™ Extended RAS Panel test which was recently approved by the FDA for the detection of multiple RAS gene [email protected] informationSupplementary data are available online.


2017 ◽  
Author(s):  
Sungsoo Park ◽  
Bonggun Shin ◽  
Yoonjung Choi ◽  
Kilsoo Kang ◽  
Keunsoo Kang

AbstractMotivationNext-generation sequencing (NGS), which allows the simultaneous sequencing of billions of DNA fragments simultaneously, has revolutionized how we study genomics and molecular biology by generating genome-wide molecular maps of molecules of interest. For example, an NGS-based transcriptomic assay called RNA-seq can be used to estimate the abundance of approximately 190,000 transcripts together. As the cost of next-generation sequencing sharply declines, researchers in many fields have been conducting research using NGS. The amount of information produced by NGS has made it difficult for researchers to choose the optimal set of target genes (or genomic loci).ResultsWe have sought to resolve this issue by developing a neural network-based feature (gene) selection algorithm called Wx. The Wx algorithm ranks genes based on the discriminative index (DI) score that represents the classification power for distinguishing given groups. With a gene list ranked by DI score, researchers can institutively select the optimal set of genes from the highest-ranking ones. We applied the Wx algorithm to a TCGA pan-cancer gene-expression cohort to identify an optimal set of gene-expression biomarker (universal gene-expression biomarkers) candidates that can distinguish cancer samples from normal samples for 12 different types of cancer. The 14 gene-expression biomarker candidates identified by Wx were comparable to or outperformed previously reported universal gene expression biomarkers, highlighting the usefulness of the Wx algorithm for next-generation sequencing data. Thus, we anticipate that the Wx algorithm can complement current state-of-the-art analytical applications for the identification of biomarker candidates as an alternative method.Availabilityhttps://github.com/deargen/[email protected] informationSupplementary data are available at online.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1144
Author(s):  
Nan Xiao ◽  
Soner Koc ◽  
David Roberson ◽  
Phillip Brooks ◽  
Manisha Ray ◽  
...  

The BioCompute Object (BCO) standard is an IEEE standard (IEEE 2791-2020) designed to facilitate the communication of next-generation sequencing data analysis with applications across academia, government agencies, and industry. For example, the Food and Drug Administration (FDA) supports the standard for regulatory submissions and includes the standard in their Data Standards Catalog for the submission of HTS data. We created the BCO App to facilitate BCO generation in a range of computational environments and, in part, to participate in the Advanced Track of the precisionFDA BioCompute Object App-a-thon. The application facilitates the generation of BCOs from both workflow metadata provided as plaintext and from workflow contents written in the Common Workflow Language. The application can also access and ingest task execution results from the Cancer Genomics Cloud (CGC), an NCI funded computational platform. Creating a BCO from a CGC task significantly reduces the time required to generate a BCO on the CGC by auto-populating workflow information fields from CGC workflow and task execution results. The BCO App supports exporting BCOs as JSON or PDF files and publishing BCOs to both the CGC platform and to GitHub repositories.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document