scholarly journals Assessment of bacteria and archaea levels in Çakalburnu Lagoon (İzmir) sediments by real-time PCR

2021 ◽  
Vol 38 (2) ◽  
pp. 147-154
Author(s):  
Burcu Omuzbüken ◽  
Aslı Kaçar

Coastal lagoons are shallow water masses, discredited from the marines as a barrier that permits water to change through one or more inputs. These fragile ecosystems have a specific type of sediments with their own characteristics. Biogeochemical processes, mostly intervened by the benthic microbial loop, are significant for understanding the relationships among the lagoon and the contiguous coastal partition. This study was conducted in the Çakalburnu Lagoon (İzmir) area, which is located at the Bay of İzmir and the area covers 67 hectares. The aim of the present study is to constitute of determining the number of different microbial communities in the lagoon sediments. We collected from lagoon sediments samples at 7 stations and we applied a Real-time qPCR assay to determine levels of archaea (ARC), methanogenic archaea (MCRA), anaerobic methane oxidation archaea (ANME 1, ANME 2a, ANME 2c), bacteria (BAC) and sulfate-reducing bacteria (SRB2) in the study. The amount of maximum abundance of archaeal and bacterial 16S rRNA gene in sediments are 2,66x1010 gene copy numbers/g and 3,89x107 gene copy numbers/g, respectively. So, it was established that the archaeal abundance was intense in the lagoon sediments. The characterization of microbial diversity is significant for the comprehension of the biological fundamentals of the ecosystem. The data presented in our study contributes to the studies on preserving ecological and microbiological balance and determining biogeochemical cycles in sensitive ecosystems such as lagoons. The research will be conducted on studies to determine the abundance levels of seasonal and annual microbial groups in the future.

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Samaly Santos Souza ◽  
Mariangela L'Episcopia ◽  
Carlo Severini ◽  
Venkatachalam Udhayakumar ◽  
Naomi W. Lucchi

ABSTRACTPiperaquine is an important partner drug used in artemisinin-based combination therapies (ACTs). An increase in theplasmepsin 2and3gene copy numbers has been associated with decreased susceptibility ofPlasmodium falciparumto piperaquine in Cambodia. Here, we developed a photo-induced electron transfer real-time PCR (PET-PCR) assay to quantify the copy number of theP. falciparumplasmepsin 2gene (PfPM2) that can be used in countries whereP. falciparumis endemic to enhance molecular surveillance.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Žana Kapustina ◽  
Justina Medžiūnė ◽  
Gediminas Alzbutas ◽  
Irmantas Rokaitis ◽  
Karolis Matjošaitis ◽  
...  

Sequence-based characterization of bacterial communities has long been a hostage of limitations of both 16S rRNA gene and whole metagenome sequencing. Neither approach is universally applicable, and the main efforts to resolve constraints have been devoted to improvement of computational prediction tools. Here, we present semi-targeted 16S rRNA sequencing (st16S-seq), a method designed for sequencing V1–V2 regions of the 16S rRNA gene along with the genomic locus upstream of the gene. By in silico analysis of 13 570 bacterial genome assemblies, we show that genome-linked 16S rRNA sequencing is superior to individual hypervariable regions or full-length gene sequences in terms of classification accuracy and identification of gene copy numbers. Using mock communities and soil samples we experimentally validate st16S-seq and benchmark it against the established microbial classification techniques. We show that st16S-seq delivers accurate estimation of 16S rRNA gene copy numbers, enables taxonomic resolution at the species level and closely approximates community structures obtainable by whole metagenome sequencing.


2006 ◽  
Vol 72 (8) ◽  
pp. 5181-5189 ◽  
Author(s):  
S. Henry ◽  
D. Bru ◽  
B. Stres ◽  
S. Hallet ◽  
L. Philippot

ABSTRACT Nitrous oxide (N2O) is an important greenhouse gas in the troposphere controlling ozone concentration in the stratosphere through nitric oxide production. In order to quantify bacteria capable of N2O reduction, we developed a SYBR green quantitative real-time PCR assay targeting the nosZ gene encoding the catalytic subunit of the nitrous oxide reductase. Two independent sets of nosZ primers flanking the nosZ fragment previously used in diversity studies were designed and tested (K. Kloos, A. Mergel, C. Rösch, and H. Bothe, Aust. J. Plant Physiol. 28:991-998, 2001). The utility of these real-time PCR assays was demonstrated by quantifying the nosZ gene present in six different soils. Detection limits were between 101 and 102 target molecules per reaction for all assays. Sequence analysis of 128 cloned quantitative PCR products confirmed the specificity of the designed primers. The abundance of nosZ genes ranged from 105 to 107 target copies g−1 of dry soil, whereas genes for 16S rRNA were found at 108 to 109 target copies g−1 of dry soil. The abundance of narG and nirK genes was within the upper and lower limits of the 16S rRNA and nosZ gene copy numbers. The two sets of nosZ primers gave similar gene copy numbers for all tested soils. The maximum abundance of nosZ and nirK relative to 16S rRNA was 5 to 6%, confirming the low proportion of denitrifiers to total bacteria in soils.


Microbiome ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Stilianos Louca ◽  
Michael Doebeli ◽  
Laura Wegener Parfrey

2001 ◽  
Vol 67 (7) ◽  
pp. 3122-3126 ◽  
Author(s):  
Ingeborg Hein ◽  
Angelika Lehner ◽  
Petra Rieck ◽  
Kurt Klein ◽  
Ernst Brandl ◽  
...  

ABSTRACT Two different real-time quantitative PCR (RTQ-PCR) approaches were applied for PCR-based quantification of Staphylococcus aureus cells by targeting the thermonuclease (nuc) gene. Purified DNA extracts from pure cultures ofS. aureus were quantified in a LightCycler system using SYBR Green I. Quantification proved to be less sensitive (60nuc gene copies/μl) than using a fluorigenic TaqMan probe (6 nuc gene copies/μl). Comparison of the LightCycler system and the well-established ABI Prism 7700 SDS with TaqMan probes revealed no statistically significant differences with respect to sensitivity and reproducibility. Application of the RTQ-PCR assay to quantify S. aureus cells in artificially contaminated cheeses of different types achieved sensitivities from 1.5 � 102 to 6.4 � 102 copies of the nuc gene/2 g, depending on the cheese matrix. The coefficients of correlation between log CFU and nuc gene copy numbers ranged from 0.979 to 0.998, thus enabling calculation of the number of CFU of S. aureus in cheese by performing RTQ-PCR.


2010 ◽  
Vol 76 (7) ◽  
pp. 2212-2217 ◽  
Author(s):  
C. F. Weber ◽  
G. M. King

ABSTRACT Isolation of multiple carbon monoxide (CO)-oxidizing Burkholderia strains and detection by culture-independent approaches suggest that Burkholderia may be an important component of CO-oxidizing communities in Hawaiian volcanic deposits. The absolute and relative abundance of the bacteria in these communities remains unknown, however. In this study, a quantitative PCR (Q-PCR) approach has been developed to enumerate Burkholderia coxL genes (large subunit of carbon monoxide dehydrogenase). This represents the first attempt to enumerate coxL genes from CO oxidizers in environmental samples. coxL copy numbers have been determined for samples from three sites representing a vegetation gradient on a 1959 volcanic deposit that included unvegetated cinders (bare), edges of vegetated sites (edge), and sites within tree stands (canopy). Q-PCR has also been used to estimate copy numbers of Betaproteobacteria 16S rRNA gene copy numbers and total Bacteria 16S rRNA. coxL genes could not be detected in the bare site (detection limit, ≥4.7 � 103 copies per reaction) but average 1.0 � 108 � 2.4 � 107 and 8.6 � 108 � 7.6 �107 copies g−1 (dry weight) in edge and canopy sites, respectively, which differ statistically (P = 0.0007). Average Burkholderia coxL gene copy numbers, expressed as a percentage of total Bacteria 16S rRNA gene copy numbers, are 6.2 and 0.7% for the edge and canopy sites, respectively. Although the percentage of Burkholderia coxL is lower in the canopy site, significantly greater gene copy numbers demonstrate that absolute abundance of coxL increases in vegetated sites and contributes to the expansion of CO oxidizer communities during biological succession on volcanic deposits.


2003 ◽  
Vol 69 (12) ◽  
pp. 7289-7297 ◽  
Author(s):  
Jaana Vaitomaa ◽  
Anne Rantala ◽  
Katrianna Halinen ◽  
Leo Rouhiainen ◽  
Petra Tallberg ◽  
...  

ABSTRACT Cyanobacterial mass occurrences in freshwater lakes are generally formed by Anabaena, Microcystis, and Planktothrix, which may produce cyclic heptapeptide hepatotoxins, microcystins. Thus far, identification of the most potent microcystin producer in a lake has not been possible due to a lack of quantitative methods. The aim of this study was to identify the microcystin-producing genera and to determine the copy numbers of microcystin synthetase gene E (mcyE) in Lake Tuusulanjärvi and Lake Hiidenvesi in Finland by quantitative real-time PCR. The microcystin concentrations and cyanobacterial cell densities of these lakes were also determined. The microcystin concentrations correlated positively with the sum of Microcystis and Anabaena mcyE copy numbers from both Lake Tuusulanjärvi and Lake Hiidenvesi, indicating that mcyE gene copy numbers can be used as surrogates for hepatotoxic Microcystis and Anabaena. The main microcystin producer in Lake Tuusulanjärvi was Microcystis spp., since average Microcystis mcyE copy numbers were >30 times more abundant than those of Anabaena. Lake Hiidenvesi seemed to contain both nontoxic and toxic Anabaena as well as toxic Microcystis strains. Identifying the most potent microcystin producer in a lake could be valuable for designing lake restoration strategies, among other uses.


2009 ◽  
Vol 76 (3) ◽  
pp. 843-850 ◽  
Author(s):  
Bas van der Zaan ◽  
Fredericke Hannes ◽  
Nanne Hoekstra ◽  
Huub Rijnaarts ◽  
Willem M. de Vos ◽  
...  

ABSTRACT Quantitative analysis of genes that code for Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenases TceA, VcrA, and BvcA was done on groundwater sampled from 150 monitoring wells spread over 11 chlorinated ethene polluted European locations. Redundancy analysis was used to relate molecular data to geochemical conditions. Dehalococcoides 16S rRNA- and vinyl chloride (VC)-reductase genes were present at all tested locations in concentrations up to 106 gene copies per ml of groundwater. However, differences between and also within locations were observed. Variation in Dehalococcoides 16S rRNA gene copy numbers were most strongly correlated to dissolved organic carbon concentration in groundwater and to conditions appropriate for biodegradation of chlorinated ethenes (U.S. Environmental Protection Agency score). In contrast, vcrA gene copy numbers correlated most significantly to VC and chlorinated ethene concentrations. Interestingly, bvcA and especially tceA were more correlated with oxidizing conditions. In groundwater microcosms, dechlorination of 1 mM VC was correlated to an increase of vcrA and/or bvcA gene copies by 2 to 4 orders of magnitude. Interestingly, in 34% of the monitoring wells and in 40% of the active microcosms, the amount of individual VC-reductase gene copies exceeded that of Dehalococcoides 16S rRNA gene copies. It is concluded that the geographical distribution of the genes was not homogeneous, depending on the geochemical conditions, whereby tceA and bvcA correlated to more oxidized conditions than Dehalococcoides 16S rRNA and vcrA. Because the variation in VC-reductase gene numbers was not directly correlated to variation in Dehalococcoides spp., VC-reductase genes are better monitoring parameters for VC dechlorination capacity than Dehalococcoides spp.


Sign in / Sign up

Export Citation Format

Share Document