DEVELOPMENT OF A PLANT FOR THE INTRODUCTION OF ENERGY-SAVING LIGHT TECHNOLOGY FOR GROWING GREATER WAX MOTH IN AN INDUSTRIAL SCALE

2021 ◽  
Vol 16 (3) ◽  
pp. 72-78
Author(s):  
Nadezhda Kondrateva ◽  
Anastasiya Osokina ◽  
Vasiliy Vashtiev ◽  
Daniil Buzmakov ◽  
Roman Bol'shin ◽  
...  

The larvae of the greater wax moth (Galleria mellonella L.) are not only a serious pest of bee colonies, but also a valuable raw material for the production of biologically active substances widely used in pharmaceuticals, cosmetology, food industry, animal feed, as well as a source of high-quality protein. We have developed an energy-saving installation for industrial insect cultivation, consisting of two modules: the first for butterflies (adults), the second for larvae, pupae and eggs. To implement energy-saving light technology, experiments with a large wax moth were carried out in the laboratory of Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences. The experiments were repeated 4 times. There were 20 specimens of G. mellonella in each experiment. The air temperature was maintained at 28° C, air humidity 50%. The influence of the duration and wavelength of radiation (400 nm, 491 nm, 546 nm and 577 nm) on the number of adults that moved to the module for butterflies and on the mass of laid eggs was studied. The radiation of 400 nm turned out to be the most effective, since 45% of butterflies moved to it and the mass of laid eggs was 32%, which is significantly higher than that of the radiation of 491, 546 and 577 nm. The duration of the radiation was 10 minutes, 30 minutes and 60 min. With an experiment duration of 60 min. 45% of the large wax moth is transferred to the butterfly module, with an experiment duration of 30 minutes. - 44%, and with an experiment duration of 10 minutes, 43% of the large wax moth moved. Therefore, it is recommended to maintain the operating time of LEDs with a wavelength of 400 nm for 30 minutes. The aim of the research is to develop an installation for the implementation of energy-saving light technology for the cultivation of larvae of the greater wax moth (Galleria mellonella L.) on an industrial scale

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1900-1920
Author(s):  
Aiste Dijokaite ◽  
Maria Victoria Humbert ◽  
Emma Borkowski ◽  
Roberto M La Ragione ◽  
Myron Christodoulides

2006 ◽  
Vol 387 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Gregor Langen ◽  
Jafargholi Imani ◽  
Boran Altincicek ◽  
Gernot Kieseritzky ◽  
Karl-Heinz Kogel ◽  
...  

Abstract A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.


2018 ◽  
Vol 157 ◽  
pp. 1-3 ◽  
Author(s):  
Yuri S. Tokarev ◽  
Ekaterina V. Grizanova ◽  
Anastasia N. Ignatieva ◽  
Ivan M. Dubovskiy

Author(s):  
Karem Ghoneim ◽  
Khalid Hamadah ◽  
Mohammad Tanani ◽  
Dyaa Emam

The greater wax moth, Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) is the most destructive pest of honey bee, Apis mellifera Linnaeus (Hymenoptera: Apidae), throughout the world. The present study was conducted to determine the quantitative and qualitative impairing effects of the arthropod venoms, viz., death stalker scorpion Leiurus quinquestriatus (Hemprich & Ehrenberg) venom (SV), oriental Hornet (wasp) Vespa orientalis Linnaeus venom (WV) and Apitoxin of A. mellifera (AP) on the larval haemogram. For this purpose, the 3rd instar larvae were treated with LC50 of each of these venoms (3428.9, 2412.6, and 956.16 ppm, respectively). The haematological investigation was conducted in haemolymph of the 5th and 7th (last) instar larvae. The important results could be summarized as follows. Five basic types of the freely circulating haemocytes in the haemolymph of last instar (7th) larvae of G. mellonella had been identified: Prohemocytes (PRs), Plasmatocytes (PLs), Granulocytes (GRs), Spherulocytes (SPs) and Oenocytoids (OEs). All venoms unexceptionally prohibited the larvae to produce normal hemocyte population (count). No certain trend of disturbance in the differential hemocyte counts of circulating hemocytes in larvae of G. mellonella after treatment with the arthropod venoms. Increasing or decreasing population of the circulating hemocytes seemed to depend on the potency of the venom, hemocyte type and the larval instar.  In PRs of last instar larvae, some cytopathological features had been observed after treatment with AP or WV, but SV failed to cause cytopathological features. With regard to PLs, some cytopathological features had been observed after treatment with AP while both SV and WV failed to cause cytopathological features in this hemocyte type. No venom exhibited cytopathological effects on GRs, SPs or OEs.


ZooKeys ◽  
2020 ◽  
Vol 970 ◽  
pp. 51-61
Author(s):  
Seung Jin Roh ◽  
Haechul Park ◽  
Seong-Hyun Kim ◽  
So-Yun Kim ◽  
Yong-Su Choi ◽  
...  

The greater wax moth, Galleria mellonella Linnaeus, is well known as a pest of honey bees and for the biodegradation of wax and polyethylene by their larvae. The genus Galleria has long been considered monotypic and found worldwide. A taxonomic study of the genus Galleria is presented based on morphological and molecular characters (COI, CAD, wg). A new species (Galleria similis Roh & Song, sp. nov.) is recognized on the Korean peninsula. The new species is superficially similar to G. mellonella but they can be separated by the structures of hindwing venation and male genitalia. Habitus photographs and illustrations of diagnostic characters are provided.


Sign in / Sign up

Export Citation Format

Share Document