Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco

2006 ◽  
Vol 387 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Gregor Langen ◽  
Jafargholi Imani ◽  
Boran Altincicek ◽  
Gernot Kieseritzky ◽  
Karl-Heinz Kogel ◽  
...  

Abstract A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.

Sociobiology ◽  
2020 ◽  
Vol 67 (1) ◽  
pp. 89
Author(s):  
Daniele Maria Telles ◽  
Gabriel Moreno Martineli ◽  
Maurice Fabian Scaloppi ◽  
Marina Pagliai Ferreira Luz ◽  
Samir Moura Kadri ◽  
...  

Honey bees (Apis mellifera L.) have great global socioeconomic and environmental importance. However, the greater wax moth (Galleria mellonella L.) is a pest that causes serious worldwide damage to honey bee colonies. Good beekeeping practices and physical, chemical, or natural methods can be used to control wax moths. The use of natural products is a more sustainable option because of their lower toxicity to the environment and the colony. Therefore, we evaluated the efficiency of four natural products for greater wax moth control: neem oil (Azadirachta indica), eucalyptus oil (Eucalyptus spp.), tobacco extract (Nicotiana tabacum), and malagueta pepper extract (Capsicum frutescens). We also evaluated their effects on adult bees and on the population growth of colonies. The 4th instar wax moths and adult bees were subjected to in vitro bioassays of different concentrations of the products. The results allowed usto establish a concentration for each product that was safe for the bees and effectively controlled the moth. Then, we sprayed them on bee colonies to evaluate their effects on population growth. The neem and eucalyptus oils caused wax moth mortality at low concentrations, but did not affect colony population growth. However, they did have a toxic effect on adult bees. The tobacco and pepper extracts efficiently controlled the moth, but did not cause adult bee mortality or interfered with the population growth of the colonies. Therefore, the tobacco and pepper extracts could efficiently control the greater wax moth, without damaging honey bees.


2020 ◽  
pp. 1-10
Author(s):  
Zahra Montazer ◽  
Mohammad B. Habibi Najafi ◽  
David B. Levin

Three bacterial species isolated from whole body extracts of the greater wax moth larvae, Galleria mellonella, were evaluated for their ability to utilize low-density polyethylene (LDPE) as a sole carbon source in vitro. These bacteria were identified as Lysinibacillus fusiformis, Bacillus aryabhattai, and Microbacterium oxydans. Their ability to biodegrade LDPE was assessed by growth curves, cell biomass production, polyethylene (PE) weight loss, and the presence of LDPE hydrolysis products in the growth media. Consortia of these bacteria with three other bacteria previously shown to degrade LDPE (Cupriavidus necator H16, Pseudomonas putida LS46, and Pseudomonas putida IRN22) were also tested. Growth curves of the bacteria utilizing LDPE as a sole carbon source revealed a peak in cell density after 24 h. Cell densities declined by 48 h but slowly increased again to different extents, depending on the bacteria. Incubation of LDPE with bacteria isolated from greater wax moth larvae had significant effects on bacterial cell mass production and weight loss of LDPE in PE-containing media. The bacterial consortia were better able to degrade LDPE than were the individual species alone. Gas chromatographic analyses revealed the presence of linear alkanes and other unknown putative LDPE hydrolysis products in some of bacterial culture media.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1900-1920
Author(s):  
Aiste Dijokaite ◽  
Maria Victoria Humbert ◽  
Emma Borkowski ◽  
Roberto M La Ragione ◽  
Myron Christodoulides

2018 ◽  
Vol 157 ◽  
pp. 1-3 ◽  
Author(s):  
Yuri S. Tokarev ◽  
Ekaterina V. Grizanova ◽  
Anastasia N. Ignatieva ◽  
Ivan M. Dubovskiy

1998 ◽  
Vol 42 (11) ◽  
pp. 2863-2869 ◽  
Author(s):  
E. Herreros ◽  
C. M. Martinez ◽  
M. J. Almela ◽  
M. S. Marriott ◽  
F. Gomez De Las Heras ◽  
...  

ABSTRACT GM 193663, GM 211676, GM 222712, and GM 237354 are new semisynthetic derivatives of the sordarin class. The in vitro antifungal activities of GM 193663, GM 211676, GM 222712, and GM 237354 against 111 clinical yeast isolates of Candida albicans,Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei, and Cryptococcus neoformans were compared. The in vitro activities of some of these compounds against Pneumocystis carinii, 20 isolates each of Aspergillus fumigatus and Aspergillus flavus, and 30 isolates of emerging less-common mold pathogens and dermatophytes were also compared. The MICs of GM 193663, GM 211676, GM 222712, and GM 237354 at which 90% of the isolates were inhibited (MIC90s) were 0.03, 0.03, 0.004, and 0.015 μg/ml, respectively, for C. albicans, including strains with decreased susceptibility to fluconazole; 0.5, 0.5, 0.06, and 0.12 μg/ml, respectively, for C. tropicalis; and 0.004, 0.015, 0.008, and 0.03 μg/ml, respectively, forC. kefyr. GM 222712 and GM 237354 were the most active compounds against C. glabrata, C. parapsilosis, and Cryptococcus neoformans. AgainstC. glabrata and C. parapsilosis, the MIC90s of GM 222712 and GM 237354 were 0.5 and 4 μg/ml and 1 and 16 μg/ml, respectively. The MIC90s of GM 222712 and GM 237354 againstCryptococcus neoformans were 0.5 and 0.25 μg/ml, respectively. GM 193663, GM 211676, GM 222712, and GM 237354 were extremely active against P. carinii. The efficacies of sordarin derivatives against this organism were determined by measuring the inhibition of the uptake and incorporation of radiolabelled methionine into newly synthesized proteins. All compounds tested showed 50% inhibitory concentrations of <0.008 μg/ml. Against A. flavus and A. fumigatus, the MIC90s of GM 222712 and GM 237354 were 1 and 32 μg/ml and 32 and >64 μg/ml, respectively. In addition, GM 237354 was tested against the most important emerging fungal pathogens which affect immunocompromised patients. Cladosporium carrioni, Pseudallescheria boydii, and the yeast-like fungi Blastoschizomyces capitatus and Geotrichum clavatum were the most susceptible of the fungi to GM 237354, with MICs ranging from ≤0.25 to 2 μg/ml. The MICs of GM 237354 against Trichosporon beigelii and the zygomycetesAbsidia corymbifera, Cunninghamella bertholletiae, and Rhizopus arrhizus ranged from ≤0.25 to 8 μg/ml. Against dermatophytes, GM 237354 MICs were ≥2 μg/ml. In summary, we concluded that some sordarin derivatives, such as GM 222712 and GM 237354, showed excellent in vitro activities against a wide range of pathogenic fungi, includingCandida spp., Cryptococcus neoformans, P. carinii, and some filamentous fungi and emerging invasive fungal pathogens.


Sign in / Sign up

Export Citation Format

Share Document