scholarly journals Effect of L-Glutathione Treatment during Somatic Cell Nuclear Transfer Procedures on the Subsequent Embryonic Development and DNA Methylation Status of Cloned Bovine Embryos

2014 ◽  
Vol 29 (4) ◽  
pp. 345-350
Author(s):  
Hyo-Kyung Bae ◽  
Nam-Sik Yoon ◽  
In-Sun Hwang ◽  
Choon-Keun Park ◽  
Boo-Keun Yang ◽  
...  
2010 ◽  
Vol 12 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Ken Sawai ◽  
Masashi Takahashi ◽  
Satoru Moriyasu ◽  
Hiroki Hirayama ◽  
Akira Minamihashi ◽  
...  

2010 ◽  
Vol 12 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Ken Sawai ◽  
Masashi Takahashi ◽  
Satoru Moriyasu ◽  
Hiroki Hirayama ◽  
Akira Minamihashi ◽  
...  

2008 ◽  
Vol 53 (13) ◽  
pp. 1996-2001 ◽  
Author(s):  
Jie Chen ◽  
DongJie Li ◽  
YanQin Liu ◽  
Cui Zhang ◽  
YunPing Dai ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1034
Author(s):  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Lian Cai ◽  
Mirae Kim ◽  
...  

This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.


2018 ◽  
Vol 50 (4) ◽  
pp. 1376-1397 ◽  
Author(s):  
Yanhui Zhai ◽  
Zhiren Zhang ◽  
Hao Yu ◽  
Li Su ◽  
Gang Yao ◽  
...  

Background/Aims: DNA methylation and histone modifications are essential epigenetic marks that can significantly affect the mammalian somatic cell nuclear transfer (SCNT) embryo development. However, the mechanisms by which the DNA methylation affects the epigenetic reprogramming have not been fully elucidated. Methods: In our study, we used quantitative polymerase chain reaction (qPCR), Western blotting, immunofluorescence staining (IF) and sodium bisulfite genomic sequencing to examine the effects of RG108, a DNA methyltransferase inhibitor (DNMTi), on the dynamic pattern of DNA methylation and histone modifications in porcine SCNT embryos and investigate the mechanism by which the epigenome status of donor cells’ affects SCNT embryos development and the crosstalk between epigenetic signals. Results: Our results showed that active DNA demethylation was enhanced by the significantly improving expression levels of TET1, TET2, TET3 and 5hmC, and passive DNA demethylation was promoted by the remarkably inhibitory expression levels of DNMT1, DNMT3A and 5mC in embryos constructed from the fetal fibroblasts (FFs) treated with RG108 (RG-SCNT embryos) compared to the levels in embryos from control FFs (FF-SCNT embryos). The signal intensity of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 9 acetylation (H3K9Ac) was significantly increased and the expression levels of H3K4 methyltransferases were more than 2-fold higher expression in RG-SCNT embryos. RG-SCNT embryos had significantly higher cleavage and blastocyst rates (69.3±1.4%, and 24.72±2.3%, respectively) than FF-SCNT embryos (60.1±2.4% and 18.38±1.9%, respectively). Conclusion: Dynamic changes in DNA methylation caused by RG108 result in dynamic alterations in the patterns of H3K4me3, H3K9Ac and histone H3 lysine 9 trimethylation (H3K9me3), which leads to the activation of embryonic genome and epigenetic modification enzymes associated with H3K4 methylation, and contributes to reconstructing normal epigenetic modifications and improving the developmental efficiency of porcine SCNT embryos.


2015 ◽  
Vol 17 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Hongliang Sun ◽  
Fenghua Lu ◽  
Peng Zhu ◽  
Xiaohua Liu ◽  
Mingming Tian ◽  
...  

2007 ◽  
Vol 75 (2) ◽  
pp. 250-264 ◽  
Author(s):  
Aaron J. Bonk ◽  
Rongfeng Li ◽  
Liangxue Lai ◽  
Yanhong Hao ◽  
Zhonghua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document