scholarly journals Preceding Vehicle Detection Method Based on Visual Fusion

Author(s):  
Li-fu LI ◽  
Yi LIANG ◽  
Hui ZHOU
2021 ◽  
Vol 1802 (3) ◽  
pp. 032075
Author(s):  
Yongqing Wang ◽  
Guochen Cui ◽  
Shufeng Wang ◽  
Junyou Zhang

2020 ◽  
Vol 57 (10) ◽  
pp. 101507
Author(s):  
李汉冰 Li Hanbing ◽  
徐春阳 Xu Chunyang ◽  
胡超超 Hu Chaochao

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1024 ◽  
Author(s):  
Cui ◽  
Wang ◽  
Wang ◽  
Liu ◽  
Yuan ◽  
...  

At present, preceding vehicle detection remains a challenging problem for autonomous vehicle technologies. In recent years, deep learning has been shown to be successful for vehicle detection, such as the faster region with a convolutional neural network (Faster R-CNN). However, when the host vehicle speed increases or there is an occlusion in front, the performance of the Faster R-CNN algorithm usually degrades. To obtain better performance on preceding vehicle detection when the speed of the host vehicle changes, a speed classification random anchor (SCRA) method is proposed. The reasons for degraded detection accuracy when the host vehicle speed increases are analyzed, and the factor of vehicle speed is introduced to redesign the anchors. Redesigned anchors can adapt to changes of the preceding vehicle size rule when the host vehicle speed increases. Furthermore, to achieve better performance on occluded vehicles, a Q-square penalty coefficient (Q-SPC) method is proposed to optimize the Faster R-CNN algorithm. The experimental validation results show that compared with the Faster R-CNN algorithm, the SCRA and Q-SPC methods have certain significance for improving preceding vehicle detection accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2348 ◽  
Author(s):  
Liangliang Lou ◽  
Jinyi Zhang ◽  
Yong Xiong ◽  
Yanliang Jin

Smart Parking Management Systems (SPMSs) have become a research hotspot in recent years. Many researchers are focused on vehicle detection technology for SPMS which is based on magnetic sensors. Magnetism-based wireless vehicle detectors (WVDs) integrate low-power wireless communication technology, which improves the convenience of construction and maintenance. However, the magnetic signals are not only susceptible to the adjacent vehicles, but also affected by the magnetic signal dead zone of high-chassis vehicles, resulting in a decrease in vehicle detection accuracy. In order to improve the vehicle detection accuracy of the magnetism-based WVDs, the paper introduces an RF-based vehicle detection method based on the characteristics analysis of received signal strengths (RSSs) generated by the wireless transceivers. Since wireless transceivers consume more energy than magnetic sensors, the proposed RF-based method is only activated to extract the data characteristics of RSSs to further judge the states of vehicles when the data feature of magnetic signals is not sufficient to provide accurate judgment on parking space status. The proposed method was evaluated in an actual roadside parking lot and experimental results show that when the sampling rate of magnetic sensor is 1 Hz, the vehicle detection accuracy is up to 99.62%. Moreover, compared with machine-learning-based vehicle detection method, the experimental results show that our method has achieved a good compromise between detection accuracy and power consumption.


2012 ◽  
Vol 546-547 ◽  
pp. 721-726
Author(s):  
Hong Xiang Shao ◽  
Xiao Ming Duan

A detection method which selective fuses the nine detection results of RGB, YCbCr and HSI color space according to the image color space relative independence of each component and complementarities is approached in order to improve vehicle video detection accuracy. The method fuses three different detection results in nine components by the value of H when the value of both S and I are higher and does another three detection results when the value of both S and I are smaller. Experiments show that the method compared to the traditional method using only the detection results of the brightness component improved substantial, reduced empty of the detected vehicle a large extent and increased traffic information data accuracy depending on the detection result.


Sign in / Sign up

Export Citation Format

Share Document