The Transient Conjugate Heat Transfer Analysis in Multi-zone of an Apartment House by using Crank-Nicolson Finite Difference Method (FDM)

KIEAE Journal ◽  
2017 ◽  
Vol 17 (6) ◽  
pp. 17-24
Author(s):  
Tong-So Park ◽  
Dong-Jin Shin
Author(s):  
Chandrashekhar Varanasi ◽  
Jayathi Y. Murthy ◽  
Sanjay Mathur

In recent years, there has been a great deal of interest in developing meshless methods for computational fluid dynamics (CFD) applications. In this paper, a meshless finite difference method is developed for solving conjugate heat transfer problems in complex geometries. Traditional finite difference methods (FDMs) have been restricted to an orthogonal or a body-fitted distribution of points. However, the Taylor series upon which the FDM is based is valid at any location in the neighborhood of the point about which the expansion is carried out. Exploiting this fact, and starting with an unstructured distribution of mesh points, derivatives are evaluated using a weighted least squares procedure. The system of equations that results from this discretization can be represented by a sparse matrix. This system is solved with an algebraic multigrid (AMG) solver. The implementation of Neumann, Dirichlet and mixed boundary conditions within this framework is described, as well as the handling of conjugate heat transfer. The method is verified through application to classical heat conduction problems with known analytical solutions. It is then applied to the solution of conjugate heat transfer problems in complex geometries, and the solutions so obtained are compared with more conventional unstructured finite volume methods. Metrics for accuracy are provided and future extensions are discussed.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Chandrashekhar Varanasi ◽  
Jayathi Y. Murthy ◽  
Sanjay Mathur

A meshless finite difference method is developed for solving conjugate heat transfer problems. Starting with an arbitrary distribution of mesh points, derivatives are evaluated using a weighted least-squares procedure. The resulting system of algebraic equations is sparse and is solved using an algebraic multigrid method. The implementation of the Neumann, Dirichlet, and mixed boundary conditions within this framework is described. For conjugate heat transfer problems, continuity of the heat flux and temperature are imposed on mesh points at multimaterial interfaces. The method is verified through application to classical heat conduction problems with known analytical solutions. It is then applied to the solution of conjugate heat transfer problems in complex geometries, and the solutions so obtained are compared with more conventional unstructured finite volume methods. The method improves on existing meshless methods for conjugate heat conduction by eliminating spurious oscillations previously observed. Metrics for accuracy are provided and future extensions are discussed.


Author(s):  
Lucas Peixoto ◽  
Ane Lis Marocki ◽  
Celso Vieira Junior ◽  
Viviana Mariani

2020 ◽  
Vol 40 (1) ◽  
pp. 13-27
Author(s):  
Tanmoy Kumar Debnath ◽  
ABM Shahadat Hossain

In this paper, we have applied the finite difference methods (FDMs) for the valuation of European put option (EPO). We have mainly focused the application of Implicit finite difference method (IFDM) and Crank-Nicolson finite difference method (CNFDM) for option pricing. Both these techniques are used to discretized Black-Scholes (BS) partial differential equation (PDE). We have also compared the convergence of the IFDM and CNFDM to the analytic BS price of the option. This turns out a conclusion that both these techniques are fairly fruitful and excellent for option pricing. GANIT J. Bangladesh Math. Soc.Vol. 40 (2020) 13-27


Author(s):  
Imam Basuki ◽  
C Cari ◽  
A Suparmi

<p class="Normal1"><strong><em>Abstract: </em></strong><em>Partial Differential Equations (PDP) Laplace equation can be applied to the heat conduction. Heat conduction is a process that if two materials or two-part temperature material is contacted with another it will pass heat transfer. Conduction of heat in a triangle shaped object has a mathematical model in Cartesian coordinates. However, to facilitate the calculation, the mathematical model of heat conduction is transformed into the coordinates of the triangle. PDP numerical solution of Laplace solved using the finite difference method. Simulations performed on a triangle with some angle values α and β</em></p><p class="Normal1"><strong><em> </em></strong></p><p class="Normal1"><strong><em>Keywords:</em></strong><em>  heat transfer, triangle coordinates system.</em></p><p class="Normal1"><em> </em></p><p class="Normal1"><strong>Abstrak</strong> Persamaan Diferensial Parsial (PDP) Laplace  dapat diaplikasikan pada persamaan konduksi panas. Konduksi panas adalah suatu proses yang jika dua materi atau dua bagian materi temperaturnya disentuhkan dengan yang lainnya maka akan terjadilah perpindahan panas. Konduksi panas pada benda berbentuk segitiga mempunyai model matematika dalam koordinat cartesius. Namun untuk memudahkan perhitungan, model matematika konduksi panas tersebut ditransformasikan ke dalam koordinat segitiga. Penyelesaian numerik dari PDP Laplace diselesaikan menggunakan metode beda hingga. Simulasi dilakukan pada segitiga dengan beberapa nilai sudut  dan  </p><p class="Normal1"><strong> </strong></p><p class="Normal1"><strong>Kata kunci :</strong> perpindahan panas, sistem koordinat segitiga.</p>


Sign in / Sign up

Export Citation Format

Share Document