An Instrumental Variable Forest Approach for Detecting Heterogeneous Treatment Effects in Observational Studies

2021 ◽  
Author(s):  
Guihua Wang ◽  
Jun Li ◽  
Wallace J. Hopp

This study addresses the ubiquitous challenge of using big observational data to identify heterogeneous treatment effects. This problem arises in precision medicine, targeted marketing, personalized education, and many other environments. Identifying heterogeneous treatment effects presents several analytical challenges including high dimensionality and endogeneity issues. We develop a new instrumental variable tree (IVT) approach that incorporates the instrumental variable method into a causal tree (CT) to correct for potential endogeneity biases that may exist in observational data. Our IVT approach partitions subjects into subgroups with similar treatment effects within subgroups and different treatment effects across subgroups. The estimated treatment effects are asymptotically consistent under a set of mild assumptions. Using simulated data, we show our approach has a better coverage rate and smaller mean-squared error than the conventional CT approach. We also demonstrate that an instrumental variable forest (IVF) constructed using IVTs has better accuracy and stratification than a generalized random forest. Finally, by applying the IVF approach to an empirical assessment of laparoscopic colectomy, we demonstrate the importance of accounting for endogeneity to make accurate comparisons of the heterogeneous effects of the treatment (teaching hospitals) and control (nonteaching hospitals) on different types of patients. This paper was accepted by J. George Shanthikumar, big data analytics.

2011 ◽  
Vol 19 (2) ◽  
pp. 205-226 ◽  
Author(s):  
Kevin M. Esterling ◽  
Michael A. Neblo ◽  
David M. J. Lazer

If ignored, noncompliance with a treatment or nonresponse on outcome measures can bias estimates of treatment effects in a randomized experiment. To identify and estimate causal treatment effects in the case where compliance and response depend on unobservables, we propose the parametric generalized endogenous treatment (GET) model. GET incorporates behavioral responses within an experiment to measure each subject's latent compliance type and identifies causal effects via principal stratification. Using simulation methods and an application to field experimental data, we show GET has a dramatically lower mean squared error for treatment effect estimates than existing approaches to principal stratification that impute, rather than measure, compliance type. In addition, we show that GET allows one to relax and test the instrumental variable exclusion restriction assumption, to test for the presence of treatment effect heterogeneity across a range of compliance types, and to test for treatment ignorability when treatment and control samples are balanced on observable covariates.


2018 ◽  
Vol 37 (23) ◽  
pp. 3309-3324 ◽  
Author(s):  
T. Wendling ◽  
K. Jung ◽  
A. Callahan ◽  
A. Schuler ◽  
N. H. Shah ◽  
...  

2021 ◽  
pp. 1-23
Author(s):  
Hiroyuki Kasahara ◽  
Katsumi Shimotsu

We study identification in nonparametric regression models with a misclassified and endogenous binary regressor when an instrument is correlated with misclassification error. We show that the regression function is nonparametrically identified if one binary instrument variable and one binary covariate satisfy the following conditions. The instrumental variable corrects endogeneity; the instrumental variable must be correlated with the unobserved true underlying binary variable, must be uncorrelated with the error term in the outcome equation, but is allowed to be correlated with the misclassification error. The covariate corrects misclassification; this variable can be one of the regressors in the outcome equation, must be correlated with the unobserved true underlying binary variable, and must be uncorrelated with the misclassification error. We also propose a mixture-based framework for modeling unobserved heterogeneous treatment effects with a misclassified and endogenous binary regressor and show that treatment effects can be identified if the true treatment effect is related to an observed regressor and another observable variable.


Sign in / Sign up

Export Citation Format

Share Document