scholarly journals The Effect of the Installation Angle of the Sky Quality Meter on the Night Sky Brightness and the Beginning of the Fajr Prayer Time

2021 ◽  
Vol 3 (2) ◽  
pp. 35
Author(s):  
Abu Yazid Raisal ◽  
Muhammad Hidayat ◽  
Leo Hermawan ◽  
Arwin Juli Rakhmadi

Measuring the brightness of the night sky and determining the start of Fajr prayer times can be done using SQM. Observations were made at OIF UMSU with coordinates 3o 34' 55.06" N and 98o 43' 17.09" E. The sky brightness was measured using three SQMs mounted facing the zenith, eastern horizon, and western horizon. The night sky brightness values for SQM directed to the zenith, eastern horizon, and western horizon are 18.23 mpsas, 15.82 mpsas, and 15.47 mpsas. The beginning of fajr prayer time produced by SQM is after the beginning of fajr prayer time obtained using the Accurate Times concerning the Sun's altitude 18o below the horizon. The difference obtained by SQM directed to the zenith, eastern horizon, and western horizon is 29.5 minutes, 36.7 minutes, and 39.5 minutes. In other words, the beginning of Fajr prayer time used in Indonesia is earlier than it should be.

Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto Velasco ◽  
Alexandre Simoneau

The aerosol optical depth is an important indicator of aerosol particle properties and associated radiative impacts. AOD determination is therefore very important to achieve relevant climate modeling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing techniques are available. Among these techniques, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM: a portable, low cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth by using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved at daytime from the AErosol Robotic NETwork. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometers of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool to add new information on the aerosol optical properties at night, which could be of key importance to improve climate predictions.


1950 ◽  
Vol 31 (4) ◽  
pp. 539 ◽  
Author(s):  
B. W. Currie

2020 ◽  
Vol 35 (2) ◽  
pp. 45-55
Author(s):  
Krešimir Pavlić ◽  
Željko Andreić

2013 ◽  
Vol 13 (4) ◽  
pp. 490-500 ◽  
Author(s):  
Hui-Hua Zhang ◽  
Xiao-Wei Liu ◽  
Hai-Bo Yuan ◽  
Hai-Bin Zhao ◽  
Jin-Sheng Yao ◽  
...  

1975 ◽  
Vol 87 ◽  
pp. 869 ◽  
Author(s):  
J. K. Kalinowski ◽  
R. G. Roosen ◽  
J. C. Brandt

Author(s):  
Hengtao Cui ◽  
Junru Shen ◽  
Yuxuan Huang ◽  
Xinrong Shen ◽  
Chu Wing So ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document