scholarly journals Remote Sensing of Aerosols at Night with the CoSQM Sky Brightness Data

Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto Velasco ◽  
Alexandre Simoneau

The aerosol optical depth is an important indicator of aerosol particle properties and associated radiative impacts. AOD determination is therefore very important to achieve relevant climate modeling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing techniques are available. Among these techniques, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM: a portable, low cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth by using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved at daytime from the AErosol Robotic NETwork. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometers of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool to add new information on the aerosol optical properties at night, which could be of key importance to improve climate predictions.

2021 ◽  
Vol 13 (22) ◽  
pp. 4623
Author(s):  
Charles Marseille ◽  
Martin Aubé ◽  
Africa Barreto ◽  
Alexandre Simoneau

Aerosol optical depth is an important indicator of aerosol particle properties and their associated radiative impacts. AOD determination is very important to achieve relevant climate modelling. Most remote sensing techniques to retrieve aerosol optical depth are applicable to daytime given the high level of light available. The night represents half of the time but in such conditions only a few remote sensing methods are available. Among these approaches, the most reliable are moon photometers and star photometers. In this paper, we attempt to fill gaps in the aerosol detection performed with the aforementioned techniques using night sky brightness measurements during moonless nights with the novel CoSQM, a portable, low-cost and open-source multispectral photometer. In this paper, we present an innovative method for estimating the aerosol optical depth using an empirical relationship between the zenith night sky brightness measured at night with the CoSQM and the aerosol optical depth retrieved during daytime from the AErosol Robotic NETwork. Although the proposed method does not measure the AOD directly, an empirical relationship with the CE318-T is shown to give good results at the location of Santa Cruz de Tenerife. Such a method is especially suited to light-polluted regions with light pollution sources located within a few kilometres of the observation site. A coherent day-to-night aerosol optical depth and Ångström Exponent evolution in a set of 354 days and nights from August 2019 to February 2021 was verified at the location of Santa Cruz de Tenerife on the island of Tenerife, Spain. The preliminary uncertainty of this technique was evaluated using the variance under stable day-to-night conditions, set at 0.02 for aerosol optical depth and 0.75 for the Ångström Exponent. These results indicate the set of CoSQM and the proposed methodology appear to be a promising tool, adding new information on the optical properties of aerosols at night, which could be of key importance in improving climate predictions.


2020 ◽  
Vol 500 (1) ◽  
pp. L47-L51
Author(s):  
Miroslav Kocifaj ◽  
Salvador Bará

ABSTRACT Night-time monitoring of the aerosol content of the lower atmosphere is a challenging task, because appropriate reference natural light sources are lacking. Here, we show that the anthropogenic night-sky brightness due to city lights can be successfully used for estimating the aerosol optical depth of arbitrarily thick atmospheric layers. This method requires measuring the zenith night-sky brightness with two detectors located at the limiting layer altitudes. Combined with an estimate of the overall atmospheric optical depth (available from ground-based measurements or specific satellite products), the ratio of these radiances provides a direct estimate of the differential aerosol optical depth of the air column between these two altitudes. These measurements can be made with single-channel low-cost radiance detectors widely used by the light pollution research community.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5590
Author(s):  
Miguel R. Alarcon ◽  
Marta Puig-Subirà ◽  
Miquel Serra-Ricart ◽  
Samuel Lemes-Perera ◽  
Manuel Mallorquín ◽  
...  

The main features of SG-WAS (SkyGlow Wireless Autonomous Sensor), a low-cost device for measuring Night Sky Brightness (NSB), are presented. SG-WAS is based on the TSL237 sensor –like the Unihedron Sky Quality Meter (SQM) or the STARS4ALL Telescope Encoder and Sky Sensor (TESS)–, with wireless communication (LoRa, WiFi, or LTE-M) and solar-powered rechargeable batteries. Field tests have been performed on its autonomy, proving that it can go up to 20 days without direct solar irradiance and remain hibernating after that for at least 4 months, returning to operation once re-illuminated. A new approach to the acquisition of average NSB measurements and their instrumental uncertainty (of the order of thousandths of a magnitude) is presented. In addition, the results of a new Sky Integrating Sphere (SIS) method have shown the possibility of performing mass device calibration with uncertainties below 0.02 mag/arcsec2. SG-WAS is the first fully autonomous and wireless low-cost NSB sensor to be used as an independent or networked device in remote locations without any additional infrastructure.


2021 ◽  
Author(s):  
Eric A. Wendt ◽  
Casey Quinn ◽  
Christian L'Orange ◽  
Daniel D. Miller-Lionberg ◽  
Bonne Ford ◽  
...  

Abstract. Atmospheric particulate matter smaller than 2.5 microns in diameter (PM2.5) impacts public health, the environment, and the climate. Consequently, a need exists for accurate, distributed measurements of surface-level PM2.5 concentrations at a global scale. Remote sensing observations of aerosol optical depth (AOD) have been used to estimate surface-level PM2.5 for studies on human health and the Earth system. However, these estimates are uncertain due to a lack of measurements available to validate the derived PM2.5 products, which rely on the ratio of surface PM2.5 to AOD. Traditional monitoring of these two air quality metrics is costly and cumbersome, leading to a lack of surface monitoring networks with high spatial density. In part 1 of this series we described the development and validation of a first-generation device for low-cost measurement of AOD and PM2.5: The Aerosol Mass and Optical Depth (AMODv1) sampler. Part 2 of the series describes a citizen-science field deployment of the AMODv1 device. Here in part 3, we present an autonomous version of the AMOD, known as AMODv2, capable of unsupervised measurement of AOD and PM2.5 at 20-minute time intervals. The AMODv2 includes a set of four optically filtered photodiodes for multi-wavelength (current version at 440, 500, 675, and 870 nm) AOD, a Plantower PMS5003 sensor for time-resolved optical PM2.5 measurements, and a pump and cyclone system for time-integrated gravimetric filter measurements of particle mass and composition. The AMODv2 uses low-cost motors and sensor data for autonomous sun alignment to provide the semi-continuous AOD measurements. Operators can connect to the AMODv2 over Bluetooth® and configure a sample using a smartphone application. A Wi-Fi module enables real-time data streaming and visualization on our website (csu-ceams.com). We present a sample deployment of 10 AMODv2s during a wildfire smoke event and demonstrate the ability of the instrument to capture changes in air quality at sub-hourly time resolution. We also present the results of an AOD validation campaign where AMODv2s were co-located with AERONET (Aerosol Robotics Network) instruments as the reference method at AOD levels ranging from 0.016 to 1.59. We observed close agreement between AMODv2s and the reference instrument with mean absolute errors of 0.046, 0.057, 0.026, and 0.033 AOD units at 440 nm, 500 nm, 675 nm, and 870 nm, respectively. We identified individual unit bias as the primary source of error between AMODv2s and reference units and propose re-calibration to mitigate these biases. The AMODv2 is well suited for citizen-science and other high-spatial-density deployments due to its low cost, compact form, user-friendly interface, and high measurement frequency of AOD and PM2.5. These deployments could provide a rich air pollution data set for evaluating remote sensing observations, atmospheric modeling simulations, and provide communities with the information they need to implement effective public health and environmental interventions.


2012 ◽  
Vol 6 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Boris B. Chen ◽  
Leonid G. Sverdlik ◽  
Sanjar A. Imashev ◽  
Paul A. Solomon ◽  
Jeffrey Lantz ◽  
...  

1950 ◽  
Vol 31 (4) ◽  
pp. 539 ◽  
Author(s):  
B. W. Currie

2019 ◽  
Vol 7 (2) ◽  
pp. 185-190
Author(s):  
Tobias Schuettler ◽  
Shimrit Maman ◽  
Raimund Girwidz

Sign in / Sign up

Export Citation Format

Share Document